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Introduction:  The road from a possibly earlier 
temperate period in Venus’ history to its current hot-
house state remains under debate [1-5]. Earlier work 
e.g. [1] assumed that a gradually brightening sun 
would drive this transition, but later work has shown 
that the cloud albedo feedback that keeps early Venus 
cool (at 4.2 Ga Venus receives ~1.4 the solar flux that 
Earth receives today) is so efficient that even modern 
Venus could in theory support temperate conditions 
[2,3,4].  

Recent work [4] has speculated that large scale 
volcanism in the form of temporally overlapping Large 
Igneous Provinces (LIPs)  could drive a transition from 
temperate to hothouse on Venus via dramatic increases 
in surface temperatures, shutting down subductive 
plate tectonics and volatile cycling. While a large im-
pactor is an additional viable hypothesis it would be 
difficult to physically detect on Venus today given its 
young surface [6,7] although isotopic fingerprints re-
main a possibility yet to be explored. As well, LIPs, 
rather than impactors have been responsible for the 
majority of recorded mass extinction and large-scale 
climate events in Earth’s history e.g. [8-10]. 

 
Methods and Conclusions: Given that Earth & 

Venus are similar in size and likely to be geochemical-
ly similar [11] we have examined the event history of 
LIPs through time on Earth (back to 2.8 Ga) as a proxy 
for Venus using the most up to date LIP database 
available [10]. Our statistical analyses of this Earth LIP 
database reveals a number of interesting conclusions: 

 
1.) Using a simple cumulative distribution func-

tion of LIP events we find strong evidence for 
approximately random and uniformly distrib-
uted LIP occurrence through time. 

2.) Any departure from this uniform probability 
over time would merely enhance the rate of 
overlapping events. 

3.) We find that pairs and triplets of LIPs closer in 
time than 0.1 to 1 Myr are likely. 

4.) The lengths of the shortest intervals between 
consecutive LIPs are on the same order as the 
durations of the environmental effect associat-
ed with major LIP eruption events such as 

those associated with the End Permian and 
End Triassic mass extinctions [9,12,13]. 

 
3-D climate modeling work with general circulation 
models (GCMs) has demonstrated the effects of indi-
vidual LIPs on Earth’s climate [14], but such models 
need to encompass multiple simultaneous large LIP 
events to better constrain their suitability for tipping a 
clement climate into a runaway greenhouse state like 
that of present day Venus. Current 3-D GCMs struggle 
to model runaway greenhouse events like that pro-
posed herein, but progress is coming [15]. 
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