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Introduction: Venus has no internally generated 

magnetic field today, and whether one existed in the 
past is unknown. In contrast, every other major planet 
besides Mars currently hosts a dynamo. Spacecraft and 
meteorites have also revealed ancient remnant mag-
netism produced on Mercury, Mars, Earth’s Moon, and 
myriad asteroids [1]. Numerical models indicate that 
Venus rotates fast enough—albeit much slower than 
Earth—to produce a dynamo in convecting, liquid 
metal alloy like Earth’s core. Three broad explanations 
have been proposed for the lack of a dynamo on Ve-
nus: First, recent work suggests that a solid core is 
compatible with the tidal Love number measured by 
the Magellan mission [2]. Second, earlier modeling 
argued that cooling and thus convection in even a liq-
uid core would halt after catastrophic resurfacing until 
the present [3]. Third, perhaps most intriguingly, a 
lack of giant impacts during the accretion of Venus 
may result in a stratified core that never convects [4].  

We evaluate these possibilities using numerical 
simulations built on a previous investigation of cou-
pled atmospheric and mantle dynamics on Venus [5].  

Numerical Methods: Surface temperature changes 
over time according to a one-dimensional, gray radia-
tive-convective atmosphere model with time-varying 
H2O and CO2 atmospheric abundances. The StagYY 
code, in 2-D, spherical annulus geometry, tracks melt-
ing and compositional changes in a convicting mantle. 

Core Model: We used a one-dimensional model for 
the core based on a fourth-order parameterization of 
the radial density profile [6]. This includes conven-
tional energy sources like secular cooling, radioactivi-
ty, and exclusion of light elements from an inner core. 
We also consider heat loss from the 
inner core and, most importantly, 
precipitation of light elements like 
MgO [e.g., 7] and/or SiO2 [8] over 
geologic time. Initially, there is no 
thermal or chemical stratification.  

Sensitivity Tests: Recycled bas-
alt or primordial material may pro-
vide a dense layer at the bottom of 
the mantle that inhibits core cooling 
[e.g., 9]. The initial temperature and 
the rates of radiogenic heating and 
precipitation are also important to 
thermal histories. The thermal con-
ductivity of iron-rich alloys under 

core conditions is critical and poorly constrained. For-
tunately, testing all plausible values requires no addi-
tional simulations since it only affects entropy produc-
tion—and not the global heat budget.  

Preliminary Results: Given available constraints, 
all three proposed scenarios remain plausible. If future 
measurements of the spin state of Venus confirm a 
liquid core and the lowest estimates for thermal con-
ductivity are correct, then absence of a dynamo is 
strong evidence for a compositionally stratified core. 
However, relatively slow cooling on Venus means that 
dynamo action in an “Earth-like” core is suppressed at 
higher values of thermal conductivity. Complete solid-
ification of the core likely requires low initial tempera-
tures and the absence of both precipitation and radio-
genic heating. Magnetic fields comparable to Earth’s 
are predicted for ~2–3 Gyr after accretion. Interesting-
ly, many simulations imply that the dynamo only per-
ished within the past ~0.5–1.5 Gyr. The mean surface 
temperature (~740 K) lies below the Curie point of 
magnetite (~858 K). So, crustal remnant magnetism 
may await detection today [10], which would support 
similar accretion processes for Venus and Earth. 
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Figure 1 | Representative results. Heat fluxes and estimated magnetic 
field strengths for high and low thermal conductivity (kc) in the core.  
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