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Introduction: The NASA Planetary Data System
(PDS) maintains archives of data collected by NASA mis-
sions that explore our solar system. The PDS Cartography
and Imaging Sciences Node (Imaging Node) provides ac-
cess to millions of images of planets, moons, comets, and
other bodies. With the large and continually growing vol-
ume of data, there is a need for tools that enable users to
quickly search for images of interest. Each image prod-
uct archived at the PDS Imaging Node is described by a
rich set of searchable metadata properties such as local
season and the time it was collected. However, users of-
ten wish to search on the content of the image to zero in
on those images most relevant to their use cases. Man-
ually searching through millions of images is infeasible.
In this abstract, we will summarize the machine learn-
ing (ML) classifiers created for the content-based search,
and we will also introduce the recent advances in training
explainable ML classifiers.

Content-Based Search: The image content-based
search capability is deployed at the PDS Image Atlas
(the Atlas) website1. The PDS Imaging Node currently
maintains and operates the image content-based search
capabilities for five missions. These content-based search
capabilities are enabled using ML classifiers. In this
work, we will summarize the techniques we used to create
MSLNet and HiRISENet classifiers.

MSLNet is a hybrid of two Convolution Neural Net-
work (CNN) classifiers2 created for images collected us-
ing the Mast Camera (Mastcam) and Mars Hand Lens
Imager (MAHLI) instruments onboard the Mars Science
Laboratory Curiosity rover, and HiRISENet is a CNN
classifier for images collected using the High Resolution
Imaging Science Experiment (HiRISE) instrument on-
board the Mars Reconnaissance Orbiter. Both MSLNet
and HiRISENet were trained using transfer learning tech-
niques [1] with data sets3,4 we published on Zenodo. Ex-
ample images we used to train and evaluate MSLNet and
HiRISENet are shown in Figure 1.

The MSLNet and HiRISENet classifiers use a confi-
dence threshold of 0.9 to determine which classification
results will be shown to users of the Atlas. To ensure that
the classifiers’ self-reported posterior probabilities are
well calibrated, we employed Platt scaling [2] to adjust

1https://pds-imaging.jpl.nasa.gov/search

2The MSLNet v1 classifier focuses on rover hardware (e.g., wheel,
calibration target, etc.), and the MSLNet v2 classifier focuses on science
targets (e.g., float rock, layered rock, etc.)

3HiRISE data: https://doi.org/10.5281/zenodo.4002935
4MSL data: https://doi.org/10.5281/zenodo.4033453
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Figure 1: Example images used to train and evaluate MSLNet
(first row) and HiRISENet (second row).

the output for each class. Platt scaling selects a tempera-
ture T and bias b to transform the logits Zi output by the
classifier for image xi prior to the conversion of Zi into a
posterior probability p = 1

1+e−Zi,k/Tk+bk
, where Zi,k is

the logit for image i and class k. The parameters T and
b are optimized using L-BFGS algorithm with respect to
the cross entropy loss on the validation set5.

Explainable Classifiers: CNN classifiers are black-
box models, which means their internal reasoning pro-
cesses are not interpretable. Despite the performance
metrics (e.g., accuracy, precision, recall, F-score, etc.)
one usually computes for evaluation, it is still possi-
ble for a CNN classifier to learn unexpected features
that potentially could lead to biased conclusions. To
overcome the stated challenges, we explored the proto-
typical part network (ProtoPNet) architecture proposed
in [3]. Moreover, we integrated the ProtoPNet architec-
ture with the MSLNet and HiRISENet to provide human-
understandable explanations. We chose ProtoPNet be-
cause (1) it helps with ensuring that the features the clas-
sifiers learned are meaningful, and (2) the explanations
can intuitively be presented to the users of the Atlas.

The ProtoPNet architecture uses a standard deep net-
work for feature extraction and introduces a prototypical
layer that learns a pre-defined number of prototypes that
best describe the class. The fully connected layer after
the prototypical layer represents the contribution of each
learned prototype to the final classification. The learned

5To train and evaluate classifiers, we split the MSLNet and
HiRISENet data sets into training, validation, and test sets
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Table 1: Experimental results of MSLNet and HiRISENet clas-
sifiers (best performance scores are in bold). Note that “Acc
(0.9)” in the title means the accuracy score computed with a
0.9 confidence threshold, and “P-” in the Classifiers column
indicates the classifier was created with a prototypical layer.

Test Set Performance
Classifiers Acc Acc (0.9) Abst Rate
MSLNet (AlexNet) 74.5% 87.2% 36.2%
MSLNet (VGG19) 81.3% 85.6% 12.0%
MSLNet (ResNet18) 79.5% 86.4% 15.5%
P-MSLNet (VGG19) 75.2% 82.5% 19.8%
P-MSLNet (ResNet18) 74.8% 83.0% 24.5%
HiRISE (AlexNet) 92.8% 94.4% 7.1%
HiRISE (VGG19) 92.6% 94.9% 6.7%
HiRISE (ResNet18) 93.5% 95.0% 3.5%
P-HiRISE (VGG19) 91.7% 93.2% 3.1%
P-HiRISE (ResNet18) 91.5% 92.9% 4.9%

prototypes contain information about the classifiers’ inter-
nal reasoning process and can be projected onto regions
of the test image. Once the regions are found, they can be
visualized as bounding boxes by using a threshold at 95%
of maximum similarity. The similarity score represents
the strength of the prototype match, while the weights of
the fully connected layer represent its contribution to a
class during training.

Results: We explored different options for training
MSLNet and HiRISENet classifiers. Firstly, we trained
the classifiers with VGG19 [4] and ResNet18 [5] back-
bone architectures. Secondly, we trained the classifiers
with and without prototypical layers. The classifiers’
performance results are summarized in Table 1. The
classifiers with the AlexNet [6] backbone architecture are
currently deployed on the Atlas. For MSLNet, the clas-
sifier trained with AlexNet backbone architecture yields
the best threshold accuracy score of 87.2%, but its ab-
stention rate of 36.2% is the worst compared to other
classifiers. For HiRISENet, the classifier trained with
ResNet18 backbone architecture yields the best threshold
accuracy score of 95.0%. The classifiers with the proto-
typical layers perform slightly worse than the classifiers
without the prototypical layers, which is expected as the
addition of prototypical layers constrains the information
passed down to the final layers.

An example visualization of the explanation gener-
ated with the “P-MSLNet (VGG19)” classifier is shown
in Figure 2. Firstly, one can observe the visual similar-
ity between the prototypes for the test and train images
in columns (c) and (d). Secondly, the prototypes with
positive weight scores (i.e., the first two rows) should
increase the predicted probability that the test image be-
longs to the “Wheel” class; the prototypes with negative
weight scores (i.e., the last three rows) should decrease
the predicted probability that the test image belongs to

Test Image

Test Prototypes Train Prototypes
Similarity score Weight Class

(a)

(b) (c) (d) (e)

Figure 2: Example visualization of the explanation generated
with the“P-MSLNet (VGG19)” classifier. Column (a) is the
test image, and column (b) is the same image overlayed with
a heatmap showing regions most activated by the prototype
learned during training, followed by column (c) showing a
cropped version of the heatmap after the threshold with the sim-
ilarity score. Column (e) shows the training images overlayed
with regions obtained after prototypes projection on the training
set and column (d) shows the cropped regions of heatmaps from
Column (e)

the “Wheel” class.
Conclusion & Future Work: In this abstract, we

summarized the techniques used to train and evaluate
MSLNet and HiRISENet, and we also demonstrated the
use of prototypical layers to train explainable classifiers.
In terms of future work, we will (1) investigate an en-
semble approach that could potentially improve the per-
formance of the explainable classifiers; (2) calibrate the
posterior probabilities of the explainable classifiers; and
(3) deploy the explainable classifiers to the next genera-
tion Atlas website that is being developed now.
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