
ENABLING MULTI-MISSION/MULTI-INSTRUMENT SEARCH: THE PDS RING-MOON SYSTEMS
NODE SOFTWARE ECOSYSTEM. Robert S. French1, Mark R. Showalter1, Joseph N. Spitale1, Yu-Jen Chang1,
Debra J. Stopp1, Matthew S. Tiscareno1, Mitchell K. Gordon1, Mia J. T. Mace1, and Emilie R. Simpson1. 1SETI
Institute, 339 Bernardo Ave, Suite 200, Mountain View, CA 94043, rfrench@seti.org.

Introduction: Planetary remote sensing data is

generated by a variety of types of instruments (e.g.,
framing cameras, spectrometers, and charged particle
detectors) mounted on a variety of platforms (e.g.,
Earth-based telescopes, orbiting telescopes, and inter-
planetary spacecraft) and produced and archived by a
variety of teams over years or decades. This diversity is
both a great strength and a great challenge. Its strength
lies in the sheer volume and diverse types of data
available for research. Its challenge lies in the difficulty
of finding the information you want – usually a small
data needle in an extremely large haystack.

We firmly believe that the key to effective search is
rich, uniform metadata. Unfortunately, the metadata
received as part of data deliveries to NASA’s Planetary
Data System (PDS) are often insufficient for this
purpose. Each data set may include specific information
deemed useful by the generating team – for example, the
primary target in the field of view, the right ascension
and declination boundaries of the image, or the name of
the instrument-specific filter used. But what if the user
wants to investigate a body that is in the image but not
the primary target? Or wants to search based on body
latitude and longitude or resolution? Or wants to search
across missions and instruments by wavelength without
being forced to learn the details of all the filters on each
instrument?

This is exactly the problem we try to solve with
Outer Planets Unified Search (OPUS), the flagship
search engine of the RMS Node. OPUS provides multi-
mission, multi-instrument search using widely
applicable metadata, such as the surface geometry of
every body in the field of view, the ring geometry of the
visible ring system, or the wavelengths at which the
observation was made. This metadata is produced at the
RMS Node using a complex set of software that has
been under development for nearly 15 years. This
software, primarily written in Python, totals more than
200,000 lines of code. It is open source and available for
public use.

Design considerations – maintainability and ease
of use: Our software has been developed and used by
many team members over many years. As such it needs
to be written in a modern, accepted language using best
practices with thorough testing and good
documentation. Our software is written primarily in
Python 3.8+ and we utilize nightly automatic test suites
including code coverage.

Design considerations - speed: OPUS currently
supports over 1.6 million observations. Each of these
needs to be analyzed at the pixel level to produce more
than 100 types of metadata, ultimately resulting in
potentially tens or hundreds of billions of complex
computations to compute all of the metadata from
scratch.

Packages: Following is a list of the primary
packages we have developed.

 cspyce is a Python interface to the NAIF CSPICE
library that is focused on high performance. The
underlying interface is written in C, which offers a
significant speedup over Python-only implementations.
We also provide a vectorized interface to nearly all
CSPICE functions so that entire NumPy arrays can be
processed at the C level without requiring many
separate Python calls. We see speedups ranging from
50% to more than 10X compared to Python-only
interfaces.

For example, if et_array is a 1000×1000 NumPy
array of times, then

 cspyce.spkezr.array("MARS",
 et_array, "J2000", "LT+S", "EARTH")

will return a 1000×1000×6 array containing the state
vectors of Mars relative to Earth for those one million
times.

Additional features include the use of Python
exceptions to replace CSPICE error flags and support
for body and frame aliases that handle SPICE IDs that
have changed over time. cspyce is available for most
platforms with pip install cspyce.

 polymath is a Python module that solves a
fundamental problem with NumPy: how to perform
operations on multi-dimensional data sets where some
dimensions simply define the observation space (e.g.,
pixels in an image) and other dimensions define the data
to be operated on (e.g., six-element state vectors).
polymath defines new Python classes such as Scalar,
Vector, Matrix, and Quaternion that perform parallel
operations at the array level, where each element is of
the given data type. All data types include efficient use
of invalid data masks and full support for numerical
derivatives. Other support includes intuitive array
indexing, three-valued logic, and the saving and loading
of state.

7015.pdf6th Planetary Data Workshop (2023)

For example, the following code creates an array of
360 three-element (X/Y/Z) vectors that form a circle of
radius 5 at evenly spaced longitudes. It then converts the
vectors to be unit length, and then derives the portion of
each vector that is perpendicular to the vector (0,1,1).

vec = Vector3.from_cylindrical(5.,
 numpy.radians(numpy.arange(360.)))
unit_vec = vec.unit()
perp_vec = unit_vec.perp([0,1,1])

 oops (Object-Oriented Python and SPICE) is a

Python module that utilizes cspyce and polymath to
provide sophisticated modeling and geometric queries.
Concepts supported include:

- instrument types: single pixels (such as
occultations), framing cameras, push broom
cameras, raster scans, raster slits, etc.;

- fields of view: flat, barrel and radial distortion,
polynomial distortion, offset, subsampled, etc.;

- frames of reference: non-rotating, rotating,
inclined, synchronous, etc.;

- spatial paths: circular, Keplerian, taken from
SPICE kernels, etc.;

- surfaces: planetocentric spheroid and ellipsoid,
planetographic spheroid and ellipsoid, limb, orbit
plane, ring plane, etc.;

- backplanes: hundreds of metadata backplanes,
such as emission, incidence, and phase angle,
surface resolution, and distance to surface can be
generated with a single function call.

- instrument: full support for popular missions and
instruments, including Cassini ISS, UVIS, and
VIMS; Galileo SSI; HST ACS, WFC3, WFPC2,
and NICMOS; Juno JIRAM and JunoCam; JWST
NIRCAM; New Horizons LORRI; and Voyager
ISS. Additional instrument support can be added
easily, because each instrument is defined using
the same core building blocks described above.

- SPICE kernel management: Automatic
management and furnishing of appropriate
SPICE kernels.

For example, the code in the next column is all that
is required to read in a Cassini ISS image, produce a
1024×1024 backplane of phase angles on the surface of
Dione, and compute the distance between the observer
(Cassini) and Dione.

Various simple scripts use oops to analyze all of the
observations in a PDS volume/bundle to create text-
based metadata files containing surface and ring
geometry. These files are available for public
download1, and are also used to feed OPUS.

1 https://pds-rings.seti.org/viewmaster/metadata

 import oops
 import hosts.cassini.iss as iss
 obs = iss.from_file('N1501619321_1.IMG')
 bp = oops.backplane.Backplane(obs)
 pa = bp.phase_angle('DIONE')
 dist = bp.center_distance('DIONE')

oops is also heavily utilized to facilitate the research

of several RMS Node scientists, and we believe that it
can dramatically reduce the effort required by many
other researchers who process remote sensing data.

 OPUS is a web-based search engine that allows
the specification of hundreds of parameters, browsing of
results, storing desired observations in a shopping cart,
and product-level downloading. It consists of an import
pipeline that populates a MySQL database, a Python-
based back end that supports a database query API, and
a JavaScript-based front end that provides the end user
experience. Although currently customized for the
missions supported by the RMS Node, OPUS is
fundamentally a generic application that could be
applied to a variety of domains.

 Minor utilities. In addition to our major projects,
we have a number of smaller modules available for
targeted tasks. These include: julian for manipulating
dates; vicar for reading and writing VICAR files;
gravity for providing information about the gravity
fields of oblate planets; pdsparser and pdstable for
reading PDS3 labels and data tables; and picmaker for
creating browse images from a wide variety of
instrument-specific data formats.

Status and future plans: Our software has been
used extensively within RMS Node projects, but has had
limited exposure to outside users. Most are not yet
available as easily-installable packages or appropriately
documented for novice users. Users are welcome to use
the software directly from our GitHub repos2, but with
limited support. We hope over time to make these
packages more amenable to public use.

2 https://github.com/SETI/pds-oops and pds-tools

7015.pdf6th Planetary Data Workshop (2023)

