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Introduction: With 22wt.% of water, the dwarf 

planet Ceres is representative of large icy bodies. Such 
bodies were subject to pervasive ice melting early on, 
due to short-lived radioisotope decay and/or accretional 
heating. They are expected to have undergone aqueous 
alteration, the extent of which depends on the tempera-
ture reached in the ocean and other environmental pa-
rameters such as pH and redox conditions. Salts have 
been found at most large icy bodies, which reflects the 
leaching of certain elements from the rock, such as al-
kali and alkaline earth metals during that period of aque-
ous alteration. The Dawn mission has returned exten-
sive observational evidence for advanced aqueous alter-
ation and chemical differentiation of the dwarf planet 
Ceres [1, 2, 3]. Important implications of leaching in-
clude displacement of a fraction of the potassium from 
the rock phase to the hydrosphere [4, 5] and the seques-
tration of the iron and other metals in oxides and sul-
fides [e.g., 5, 6]. Chemical alteration also impacts ther-
mophysical properties and introduces new materials 
(salts, potentially clathrate hydrates) in the shells of icy 
bodies [6]. While these phenomena are potentially sig-
nificant, they have not been integrated into interior mod-
els in a self-consistent manner. This work quantifies 
chemical differentiation and its impact on the physical 
evolution of Ceres, within the observational constraints 
returned by the Dawn mission.   

Observational Constraints: The Dawn mission 
has returned important constraints on the interior of 
Ceres, showing that it is differentiated into a rock-dom-
inated mantle and a volatile-rich shell with density 
~1300 kg/m3 [7] that encompasses the bulk of the origi-
nal ocean [8]. The detection of ammonium in the clays 
[1] indicates removal of potassium from the silicates. 
The crust is stronger than ice by more than three orders 
of magnitude, which suggests a large fraction of hy-
drates [8, 9], consistent with geochemical models [6]. 
Hence it is likely Ceres’ icy crust is a mixture of ice, 
clathrate hydrates, salts (including carbonates), organ-
ics, and phyllosilicates, as well as some macroporosity. 
A rocky mantle density of about 2430 kg/m3 [7] has 
been interpreted to be of chondritic origin and subjected 
to a mild thermal evolution [8]. Organics have been 
found in a few places [10] and are believed to be of in-
ternal origin. A majority of soluble organics found in 
carbonaceous chondrites are mobile and would eventu-
ally be stored in Ceres’ crust.     

Approach: This work combines geochemical mod-
eling with the Geochemist’s Workbench, PHREEQC, 
and FREZCHEM [5, 11]. A major process not properly 
approached at present is the quantification of the extent 
of aqueous alteration in any object. Observations of 
Ceres indicate that alteration was rather advanced as il-
lustrated by the abundance of Mg-serpentine and car-
bonates [1, 12]. However, in absence of constraints on 
the state of the iron, it is not possible to conclude that 
the conditions in Ceres’ early history led to chemical 
equilibrium. 

Key Results: While aqueous alteration processes 
occurred during Ceres’ first 100 My [13], the resulting 
thermal conductivity structure and redistribution of po-
tassium predicted by geochemical modeling can explain 
the long-term preservation of temperatures above the 
eutectic temperatures of chloride brines, consistent with 
Dawn’s observations [8]. In these conditions, core tem-
peratures remain below silicate dehydration tempera-
tures, also consistent with observations [8]. Geochemi-
cal modeling indicates a small offset between the ob-
served and modeled rocky mantle densities, which 
might point to a small (<10%) fraction of porosity con-
sistent with the modeling of cooling cracks and other 
processes expected during Ceres’ evolution [14]. These 
observations and interpretations carry important impli-
cations on the evolution of other large icy bodies, in par-
ticular Europa. Preliminary estimates suggest chemical 
fractionation could prevent Europa’s rocky mantle from 
reaching temperatures hot enough for silicate dehydra-
tion and differentiation of a metallic core.  
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