IDENTIFICATION AND CHARACTERIZATION OF A SILICIC VOLCANIC LAYER IN GALE CRATER, MARS USING IN SITU ACTIVE NEUTRON SPECTROSCOPY. Sean Czarnecki1,2, Craig Hardgrove1, Patrick Gasda2, William Rapin3, Jens Frydenvang4, Travis S.J. Gabriell1, Mason Starr5, Melissa Rice5, Maxim Litvak6, Suzanne Novicki2, Roger Wiens2, Lucy Thompson7, Horton Newsom8, Fred Calef9,10, Hallie Gengl10,11, 1ASU, szczarnel1@asu.edu, 2LANL, 3CalTech, 4Nat. Hist. Mus. of Denmark, Univ. of Copenhagen, 5Western Washington Univ., 6Space Research Institute, RAS, 7Univ. of New Brunswick 8Univ. New Mexico, 9JPL.

Introduction: The NASA Curiosity rover observed SiO\textsubscript{2} abundances up to 82 wt.%1 and tri-dymite (a high-T, low-P SiO\textsubscript{2} polymorph)2,3 in a lacustrine mudstone4 at Marias Pass in Gale crater. In this area, SiO\textsubscript{2} is anti-correlated with FeO\textsubscript{2} (Fig. 1), a strong thermal neutron absorber. The Dynamic Albedo of Neutrons (DAN) instrument5 is sensitive to neutron absorbers, e.g., Fe6, and H (which moderates neutron energy) in the top ~50 cm of the subsurface. Using DAN data, we mapped the distribution of this SiO\textsubscript{2}-rich material in Marias Pass, constraining its hydration, extent, thickness, and orientation.

Figure 1: ChemCam LIBS SiO\textsubscript{2} vs. FeO\textsubscript{2} for Marias Pass mudstone. Σ_{α} is bulk neutron absorption cross section.

Methods: In active mode, DAN emits neutrons which return to the DAN detectors with a time and energy distribution dependent on subsurface interactions e.g., 5. To quantify geochemical abundances within the DAN field of view, we forward model DAN time-of-flight spectra using Monte-Carlo N-Particle transport code simulations. Free parameters include Water Equivalent Hydrogen (WEH), elemental geochemistry, and depth for each subsurface layer. Simulated spectra are then compared to DAN data using Markov-Chain Monte-Carlo analyses to produce likelihood distributions as in7. Our models use geochemical abundances measured by the MSL ChemCam instrument8 in Marias Pass, with Cl values determined by the MSL APXS instrument9.

Results: We analyzed 13 DAN active measurement sites (Fig. 2) in Marias Pass and found high-SiO\textsubscript{2} material at sites 1-9 and 13. The results for sites 9 and 13 suggested that high-SiO\textsubscript{2} material was exposed at a large bedrock outcrop (α in Fig. 2), and Mastcam multispectral analysis placed this outcrop in family with known high-SiO\textsubscript{2} targets. Rover imagery at sites 10-12, where high-SiO\textsubscript{2} material was not observed, suggests this relatively low-elevation area is filled in with eroded rock and sand. A single, subhorizontal layer can project through all high-SiO\textsubscript{2} material observed in Marias Pass. This layer has a minimum thickness of 104 cm, a maximum dip to the SW of 0.6\textdegree, and WEH ranging from 1.37 \pm 0.40 to 2.77 \pm 0.32 wt.%. Fig. 3 illustrates the geometric relationships that constrain the orientation and thickness of this layer within Marias Pass.

Figure 2: (top) Map of Marias Pass with DAN surface footprints (1-13) and cross section traces. α is a high-SiO\textsubscript{2} outcrop with Mastcam multispectral observations and the blue box is an area of ChemCam high-SiO\textsubscript{2} observations. (bottom) Map of Curiosity traverse showing Marias Pass in green, two high-SiO\textsubscript{2} alteration halos, and CRISM orbital hydrated SiO\textsubscript{2} detections (β, γ, and δ).
Discussion: The lacustrine Murray formation and overlying aeolian Stimson formation contain abundant light-toned alteration zones surrounding fractures [10]. These “halos” also contain up to 86 wt.% SiO$_2$ and were likely enriched in SiO$_2$ by aqueous mobilization from an underlying source [1,10]. The most likely such source is the layer exposed in Marias Pass [1], suggesting that this layer extends beneath the alteration halos up to ~ 1 km laterally from Marias Pass (Fig. 2). Orbital hyperspectral CRISM observations have detected three exposures of hydrated SiO$_2$ several km from Marias Pass [11,12]. The elevations of these deposits suggest that they are stratigraphically equivalent to the Murray in Marias Pass (Fig. 4), assuming a regional dip ~ 3° NW [13]. We hypothesize that these detections are part of the same layer we have mapped in Marias Pass which indicates that this SiO$_2$-rich layer extends over 17.5 km.

We measured WEH abundances ranging from 1.37 ± 0.40 to 2.77 ± 0.32 wt.% and averaging 1.95 ± 0.12 wt.% with DAN, less than the 4.0 ± 1.2 wt.% average WEH determined by ChemCam for high-SiO$_2$ targets in Marias Pass (Fig. 2). The range of WEH abundances from DAN and ChemCam indicates that the hydration of the high-SiO$_2$ material in Marias Pass is heterogeneous. The tridymite-bearing material contains no hydrous crystalline phases, indicating that H is contained primarily in the amorphous fraction dominated by opal-A and/or rhyolitic glass [2] (cf. high-SiO$_2$ alteration halos, which are primarily opal-A with up to 4.0 ± 1.2 wt.% WEH [14]). Since opal-A has a greater water capacity than volcanic glass; areas with lower WEH likely contain less opal-A than areas with higher WEH.

Conclusions: We propose that the silica-rich material exposed at Marias Pass in Gale crater is a regionally extensive tridymite-bearing stratigraphic layer. This is consistent with a silicic volcanic deposit reworked and transported into Gale lake during the formation of the Murray mudstone ~ 3.8-3.6 Ga [15]. This supports previous studies which have identified evolved igneous lithologies on Mars [e.g., 16,17,18], suggesting that evolved magmatism is possible on single-plate planets.

Figure 3: Geologic cross sections A-A’ and B-B’ (see Fig. 2 for locations) showing DAN, ChemCam, and Mastcam observations of high-SiO$_2$ material. 4X vertical exaggeration. Constraints on layer thickness and orientation are illustrated.

Figure 4: Cross section C-C’ (see Fig. 2 for location) showing topographic relationship of Marias Pass to sites β and γ. 4X vertical exaggeration. Stratigraphic equivalence between Marias Pass and β or γ requires a dip of < 0.5° to the NE or SW.