THE HEAT FLOW AND PHYSICAL PROPERTIES PACKAGE HP3 ON INSIGHT – FIRST RESULTS.

T. Spohn1,2, S.E. Smrekar2, T.L. Hudson2, M. Grott1, J. Knollenberg1, C. Krause3, T. Wippermann4, R. Lichtenheld5, L. Wisniewski6, J. Grygorczuk6, S. Reershemius4, T. Spröwitz1, N. Müller1, M. Golombek2, W.B. Banerdt2 and the HP3 team.

1German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany, 2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 3MUSC, German Aerospace Center (DLR), Cologne, Germany, 4German Aerospace Center (DLR), Institute of Space Systems, Bremen, Germany, 5German Aerospace Center (DLR), Institute of System Dynamics and Control, Oberpfaffenhofen, Germany, 6Astronika Sp. Warsaw, Poland, 7International Space Science Institute, Bern, Switzerland

Introduction: On Nov 26th, 2018, the NASA InSight mission [1] landed on Mars at Elysium Planum [2] as the first geophysical observatory on another terrestrial planet. The payload includes as main instruments a seismometer SEIS [3] and the Heat Flow and Physical Properties Package HP3 [4] whose primary goal is to measure Mars’ geothermal heat flow. In addition, InSight uses the communication hardware to measure the time variation of the Martian rotation axis RISE [5] and includes an auxiliary sensor package APSS with a magnetometer, an atmospheric pressure sensor, and wind and air temperature sensors [6].

Instrument Overview: The HP3 - shown in Figure 1 - consists of a mechanical hammering device called the “Mole” for penetrating into the regolith, an instrumented tether which the Mole pulls into the ground, an infrared radiometer mounted below the lander deck to determine the surface brightness temperature, and an electronics box. The Mole and the tether are housed in a support structure assembly (SSA) before being deployed. The tether is equipped with 14 platinum resistance temperature sensors (TEM-P) to measure temperature differences with a 1-σ uncertainty of 6.5 mK. Depth is determined by a tether length measurement device (TLM) that monitors the amount of tether extracted from the support structure and a tiltmeter (STATIL) that measures the angle of the Mole axis to the local gravity vector. The Mole includes temperature sensors and heaters (TEM-A) to measure the regolith thermal conductivity to better than 3.5% (1-σ) using the Mole as a modified line heat source.

The surface heat flow is calculated by multiplying the geothermal gradient and the thermal conductivity of the regolith. The heat flow is expected to vary across the surface of a terrestrial planet. On Earth, the surface heat flow pattern is known to approximately trace the features of plate tectonics. On Mars, model calculations suggest that the surface heat flow mostly maps variations of crustal thickness (enriched in heat producing elements), moderately modified by signals from the mantle convection pattern underneath [7].

Figure 1: Components of HP3. The top panel shows the instrument in its support structure SSA but with some side wall covers removed. The vertical tube houses the Mole – shown in the panel below. The tether boxes housing the tether equipped with temperature sensors (top) and the tether connecting the instrument to the electronics box on the lander (bottom) are located to the right of the tube. The lower two panels show the radiometer and the electronics box.
For Elysium Planitia, the surface heat flow is expected to be close to the average value for Mars.

The Mole is planned to penetrate to a depth of at least 3 m but at most to 5 m. The requirement of a minimum depth of 3 m will help to significantly reduce errors introduced by the annual surface temperature variation. Depending on the value of the thermal conductivity, the annual wave thermal skin depth has been estimated to be about 1 m [4].

Landing, Deployment, and First Hammering:
InSight landed at Homestead Hollow at 4.5°N, 135.6°E (for more accurate coordinates and detailed geological descriptions of the landing site see [8,9]). The properties of the landing site are favorable for HP3 as significant slopes are absent from the deployment area as well as rocks (on the surface) of sizes that could hamper both deployment and Mole advancement to depth. In addition, HP3 could be placed far enough away from both the lander and SEIS such that the thermal effects of shadowing are reduced. All the mission requirements for HP3 placement have been satisfied.

HP3 was deployed on Feb 11, 2019 and started hammering a few days later. Unfortunately, after a rapid progress to an estimated depth of about 30 cm, the mole made little or no measurable progress during the remainder of two hammering sessions. In addition, the mole egressed at an angle of 15°-20° with respect to the gravity vector, and shifted the position of the support structure (Figure 2).

The property of the landing site

LPI support structure (Figure 2).

to the gravity vector the mole egressed at an angle of 15°, and shifted the position of the

the remainder of two hammering sessions. In addition, the mole made little or no measurea

rapid progress to an estimated depth of

hammering a few days later. Unfortunately, after

been estimated to be

minimum depth of 3

by the camera on the robotic arm. Depressions in the soil indicate that the feet were displaced during the first and second hammering events.

Figure 2: HP3 support structure deployed on the surface imaged by the camera on the robotic arm. Depressions in the soil indicate that the feet were displaced during the first and second hammering events.

To test the hypotheses an extensive test program was started at both DLR and JPL. The test program includes a set of short (~13 min.) diagnostic hammerings on Mars. The first was done on March 26th and was focused on measuring the time between the major hammer stroke and the first sub stroke with the short period seismometer (there is a total of two measurable substrokes that follow the main stroke. These are caused by movements of the hammer and counter masses inside the mole [4]). Model calculations suggest that the length of the time interval should be indicative of the mole having hull friction or not. In addition, the arm camera took a movie of the support structure. The results show that the SSA pitched forward suggesting a small movement of the mole into the regolith. The seismic data also suggested that the mole had some friction although most likely not enough for regular penetration. Additional observations with the arm camera showed that the tether in the support structure and its markings could be imaged under suitable lighting conditions through a window in the support structure providing the most direct observation of mole progress. A second and third short diagnostic hammering session focused on observing the tether will be commanded shortly.

At the time of writing, the friction-on-the-hull hypotheses seems to be most likely, although the other hypotheses have not been completely ruled out. Studies are occurring to increase the hull friction by loading the surface with the robotic arm.

First Results: The radiometer RAD is observing as planned [see 10 at this meeting]. In addition, the thermal conductivity of the near surface layer has been measured to 0.045 W/m/K using the TEM-A sensors on the mole, consistent with the thermal inertia measured by the radiometer [11]. This value is uncertain because the mole is partially buried.