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To establish an Earth-derived biosphere on the surface of Mars in future, it is necessary to raise Mars T, .
We consider a new global warming scheme using 5-10 um-long, <100 nm-diameter metal nanorods.
The resulting warming is near to fundamental physical limits on the efficiency of intentional planet-scale warming. For At =10 yr,
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Development of a scheme for
intentionally warming Mars engages
many sub-fields of current Mars science.
Research needs include:- (1) 3D
_ atmospheric modeling of the warm-up.
o, (2) 600 Pa wind-tunnel data for rod

technology is proven in space (e.g. Relativity Space’s Stargate metal printer; or last
week’s selection for flight by NASA of Made in Space, Inc.’s $73 mn Archinaut One
spacecraft), then boot-strapping becomes a workable alternative.

We consider an new global warming agent: metal dipoles (nanoantennae).
The method relies only on Mars resources that have been verified in-situ [11].
The method draws inspiration from models of mechanisms to explain 3.5 Gya
Mars rivers [e.g., 12-14]. We consider a basic nanoantenna —a ~5-10 um-long,
<100 nm-diameter nanorod. (Real applications would use multiple rod Feedbacks under warming. As Mars warms, ice caps release H,O vapor. This
lengths). Rod length is tuned so that extinction efficiency peaks at upwelling causes: (1) H,O greenhouse warming (vapor+cloud) [22-24]; (2) increased
thermal-IR wavelengths [15] (Fig. 2). Nanorods settle 10%-103 times more  water-ice scavenging of nanorods. We do not know what effect adding
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volumetric injection-to-the-atmosphere rate would provide a modest boost in T, ., favor liquid water, and possibly cause . .
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H,O snowfall at low latitudes [25]. Our predictive power is limited for 2-5K of , :
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V = — = — human-induced warming on Earth [26]; although Mars is a simpler system, T . At. (7) Proving of CO, ice reserves. (8)
At Qa At \ A, must rise by >5K for a habitable surface. So, it is hard to anticipate how 5 2

Synthetic biology for silica aerogel

where t is the optical depth needed for strong warming (~5, [12-14]), a is feedbacks will pan out (and therefore, how many nanorods will be needed) on biomineralization [28].

Mars surface area, V, is rod volume, A, is rod cross-sectional area, and At is  the real Mars.
nanorod lifetime in the atmosphere.
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