An ~3.5 Ga Impact Recorded by Cubic Baddeleyite in Lunar Meteorite Northwest Africa 12593.

C. A. Crow¹, T. M. Erickson², R. Economos³, K. Lehman Franco³, ¹University of Colorado Boulder (carolyn.crow@colorado.edu), ²Jacobs Technology/NASA Johnson Space Center, ³Southern Methodist University.

Introduction: The formation of cubic zirconia (ZrO₂) requires temperatures exceeding 2370°C, which typical geologica settings do not reach [1]. The presence of cubic zirconia associated with the high-temperature breakdown of zircon in terrestrial impact settings has led to the conclusion that this microstructure foms in superheated impact melts [e.g., 1, 2]. Cubic zirconia has been identified in Apollo samples as a heritage phase within a large ~250 μ m baddeleyite (monoclinic ZrO₂) [3] and as sub-micron inclusions within zircon grains [4]. The U-Pb age of the heritage phase cubic zirconia grain in troctolite 76535 from [3] provides evidence of crystallization in an impact melt sheet approximately 4330 million years ago.

We conducted a microstructural survey of baddeleyite grains in lunar meteorite Northwest Africa (NWA) 12593 and discovered multiple grains exhibiting evidence of heritage cubic zirconia structures. Additionally, initial ²⁰⁷Pb/²⁰⁶Pb geochronology suggests these grains have crystallization ages of ~3.5 Ga, potentially indicating a large impact during this period.

Sample: NWA 12593 is a fragmental lunar breccia containing numerous clasts, accessory phosphates, and zirconium-bearing phases. We previously presented the initial geochronology of phosphates within this sample, proposing a crystallization age near ~3.48 Ga with a subset of phosphates either having older ~4.33 Ga ages or requiring contributions of initial lead from a KREEP-like reservoir [5]. Some phosphates from this sample have demonstrated elevated δ^{37} Cl values, making it an intriguing specimen for investigating the volatile history of the Moon [6]. A petrologic study of this meteorite is ongoing, and results will be presented in this meeting by [7].

Methods: EBSD analyses were collected using a JEOL 7900F field emission Scanning Electron Microscopy with an Oxford Instruments Symmetry detector at NASA Johnson Space Center. The data were processed using Aztec-Crystal. U-Pb and ²⁰⁷Pb/²⁰⁶Pb geochronology were obtained using the Cameca ims1290 at the University of California, Los Angeles using the Hyperion II ion source. The analyses employed an O⁻³ primary beam and achieved spot sizes between ~ 5-10 microns. Reference material Phalabowra baddeleyite [8] was used to correct for instrumental fractionation of U and Pb.

Results Out of the 22 baddeleyite grains surveyed with EBSD, 4 grains exhibit complete evidence for phase heritage of a cubic structure in disorientation space (Fig. 1), while an additional 12 grains show either partial evidence for a cubic parent structure or a tetragonal parent. We conducted 207 Pb/ 206 Pb and U-Pb geochronology analyses for nine baddeleyites in NWA 12593, including the two grains with the best evidence for the phase heritage of cubic zirconia. Analyses of these two grains yield 204 Pb/ 206 Pb ratios $<10^{-4}$, suggesting no contributions from adjacent phases or inherited inial Pb. The ages of these two grains based on 204Pb/ 206 Pb measurements show agreement within 2σ uncertainty and suggest a crystallization age around or just before 3.5 billion years ago.

Conclusions: The coordinated microstructural and geochronologic investigation of NWA 12593 suggests this sample records evidence of a superheated impact melt sheet ~3.5 Ga. The results of ongoing petrologic study of this lunar meteorite [7] will help better infer the significance of this impact age.

References: [1] Timms N. E. et al. 2017. *Earth and Planetary Science Letters* 477:52-58. [2] Tolometti G. D. et al. (2022) *Earth and Planetary Science Letters* 584:117523. [4] Author J. et al. (2002) *LPS XXXIII*, Abstract #1577. [3] White L. F. et al. (2020) *Nature Astronomy* 4:974-978. [4] Kusiak M. A. et al. (2022) *Contributions to Mineralogy and Petrology* 117:112. [5] Crow C. A. et al. (2022) *LPSC LIII* Abstract #2524. [6] Hayden T. S. et al. (2021) *LPSC LII* Abstract #1550. [7] Richards M. et al. (2023) *86th Meteoritical Society Meeting*. [8-Ref for Phalabowra]

Acknowledgments: This work is an outgrowth of research on lunar apatites supported by NASA SSW grant #80NSSC0K0148.

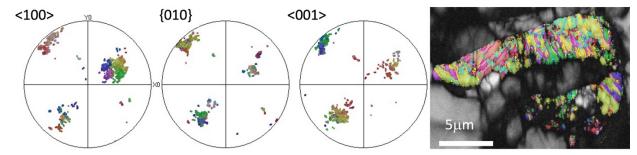


Fig 1. EBSD data for NWA 14259B Badd1 showing evidence of heritage cubic zirconia.