OXYGEN ISOTOPIC COMPOSITIONS OF REFRACTORY MINERALS FROM THE MURCHISON AND AGUAS ZARCAS CHONDrites: RESERVOIRS AND PROCESSING IN THE SOLAR NEbula

X. Yang1, 2*, M. Zhang3, J. M. Korsmeyer1, 2, 4, J. Greer1, 2, 5, A. M. Davis1, 2, 6, N. T. Kita3, 7 and P. R. Heck1, 2. 1Department of Geophysical Sciences & Chicago Center for Cosmochemistry, The University of Chicago, Chicago, IL, USA (*xinyoung@uchicago.edu). 2Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaupee Intergrative Research Center, The Field Museum of Natural History, Chicago, IL, USA. 3WiscSIMS, Department of Geosciences, University of Wisconsin–Madison, Madison, WI, USA. 4Department of Chemistry, The University of Chicago, Chicago, IL, USA. 5School of Geographical & Earth Sciences, The University of Glasgow, Glasgow, UK. 6Enrico Fermi Institute, The University of Chicago, Chicago, IL, USA.

Introduction: The mineralogy and isotopic compositions of the Solar System’s oldest solids, refractory minerals, indicate formation at different times and locations in the early Solar System [1]. The oxygen isotopic composition preserved in refractory minerals, including Ca-Al-rich inclusions (CAIs), provides snapshots of the different stages of isotopic evolution in the protoplanetary disk [1–5]. For example, the very tight distribution of O-isotopic compositions of spinel-hibonite inclusions (SHIBs) compared to the platy hibonite crystals (PLACs) can be best explained if the SHIBs formed in a isotopically more homogenized solar nebula compared to PLACs [4, 5]. The discovery of both 26Al-rich and 26Al-poor corundum-bearing inclusions may indicate that they formed from different reservoirs or as two generations [2, 6]. Here we present new oxygen isotopic data on corundum, corundum-hibonite, hibonite, and spinel grains, freshly extracted from separations of Murchison and Aguas Zarcas.

Materials and Methods: Fragments from a 71 g sample of Murchison (FMNH ME 2644 #23.20) and a 79 g sample of Aguas Zarcas (FMHN ME 6112) were freeze-thaw disintegrated [7], separated by density with heavy liquids, and acid processed [8]. One corundum, two corundum-hibonite, thirteen hibonite, and twelve spinel grains were extracted from the separation, then mounted in indium and hand-polished. Their mineralogy was confirmed by energy-dispersive X-ray spectroscopy and Raman spectroscopy. The oxygen isotope analyses were performed with the WiscSIMS CAMECA IMS 1280 following a previously developed protocol [4–5, 9].

Results and Discussion: The thirteen isolated hibonite grains can be divided into two groups based on their \(\Delta^{18}\text{O}_{\text{CCAM}} \) value (\(\Delta^{18}\text{O}_{\text{CCAM}} = \delta^{18}\text{O} + (\Delta^{17}\text{O} – \text{Intercept}_{\text{CCAM}})/(\text{Slope}_{\text{MFL}} - \text{Slope}_{\text{CCAM}}) \)) [10], which quantifies the degree of mass-dependent fractionation as the deviation in \(^{18}\text{O} \) from the CCAM (carbonaceous chondrite anhydrous mineral) line. Eight hibonite grains show \(\Delta^{18}\text{O}_{\text{CCAM}} < 7^\circ \), similar to PLAC-like CAIs in previous studies [5, 11]. Five hibonite grains as well as two hibonite-corundum inclusions and one isolated corundum display a \(\Delta^{18}\text{O}_{\text{CCAM}} > 50^\circ \), reflecting significant mass-dependent fractionation. The spinel grains do not have large mass-dependent fractionation and fall into two groups according to their \(\Delta^{17}\text{O} \) values that range from \(-22.2^\circ \) to \(-24.4^\circ \) (±1.0%) for the first group (pure Al-Mg spinel), resembling SHIBs’ isotopic composition [4] and \(-6.3^\circ \) to \(-2.4^\circ \) (±1.0%) for the second group, that can be more Cr, Fe-rich and representing chondrules’ composition [12, 13].

Corundum, the earliest condensate from a nebular gas of near-solar composition under equilibrium conditions [14], exhibits a wide range of \(^{17}\text{O} \) values in UOC and CC meteorites, \(-13^\circ \) to \(-30^\circ \) [2, 6], which coexisted with the 26Al-poor and 26Al-rich reservoirs, indicating a highly heterogeneous solar nebula and possible episodic formation. In particular, corundum condensates could have reacted with nebular gas to form hibonite or have formed from hibonite as an evaporative residue [14, 15]. Here we report corundum grains and corundum-hibonite show \(\Delta^{17}\text{O} > -25^\circ \) and \(\Delta^{18}\text{O}_{\text{CCAM}} > 50^\circ \), and the large mass-dependent fractionation favors the latter one for corundum grains in this study. Individual hibonite grains with the similar large mass-dependent fractionation further confirm the formation mechanism.

Acknowledgements: PRH and XY acknowledge funding from the TAWANI Foundation and NASA’s Emerging Worlds Program through grant 80NSSC21K0389.