NORTHWEST AFRICA (NWA) 13993: A NEWLY CLASSIFIED BRECCIATED EURITE

M. C. Valdes1,2 and P.R. Heck1,2, 1Robert A. Pritzker Center for Meteoritics and Polar Studies, Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, IL, USA. (mvaldes@fieldmuseum.org) 2Department of The Geophysical Sciences, The University of Chicago, Chicago, IL, USA.

Introduction: NWA 13993 was collected in Northwest Africa, purchased by Terry Boudreaux in 2020, and subsequently acquired by the Field Museum in the same year. The specimen is a single, 807 g stone partly covered with a glassy fusion crust that has preserved flow lines. The brecciated interior is light gray-to-tan in color and hosts at least two distinct, fine-grained matrix lithologies. Within the matrix exist mineral and lithic fragments as well as darker (dark gray to black) rounded clasts, approximately 0.5-1 cm in diameter.

Petrography: The specimen has a brecciated, ophitic to sub-ophitic texture. Larger (up to 1.5 cm) euhedral pyroxene and plagioclase grains. NWA 13993 was studied in polished thick sections using the TESCAN LYRA3 field-emission scanning electron microscope in the Department of Geophysical Sciences at the University of Chicago and aWITec alpha300 Raman spectroscopy system at the Field Museum. BSE/SEM imaging reveal that the modal abundances of pyroxene and plagioclase are nearly equal and are set in fine-grained subhedral matrix. Both low-Ca pyroxene (pigeonite) and high-Ca pyroxene (augite) are present, but pigeonite is more abundant by far (representing ~85% of the pyroxene modal abundance). Pigeonite exhibits very narrow (~0.1 μm) augite exsolution lamellae, and the original igneous Fe/Mg/Ca zoning is preserved. Within the matrix exist large (up to 1 cm) rounded clasts with variably fine-grained (up to 1 mm) textures. Intergranular silica polymorph, chromite, troilite, and Fe metal are also present. A secondary brecciated matrix lithology, which makes up approximately 20% of the area of the cross-section studied, is larger-grained and more pyroxene-rich than the primary matrix lithology. Dendritic-textured chrome-spinel is a common minor phase throughout the specimen. There are also light-colored veins which contain long plagioclase/silica polymorph needles. Oxidized Fe is visible in the hand sample as groupings of red grains, together up to 1 cm in diameter, primarily localized to the secondary matrix lithology.

Geochemistry: Low-Ca pyroxenes exhibit a compositional range of FFS48.5-55.9Wo5.7-13.3, with an average of FFS53.3±2.0Wo6.9±1.86, an average FeO/MnO of 38.9±1.1, and an average mg# of 42.6±2.0 (n=30). High-Ca pyroxenes exhibit a compositional range of FFS52.0-49.5Wo21.2-49.3, with an average of FFS58.7±7.8Wo33.9±14.4, an average FeO/MnO of 41.4±0.72, and an average mg# of 40.9±5.8 (n=4). Feldspars have the limited range of An90.49±0.78 (n=12). Plagioclase K2O contents are very low, ≤0.2 wt%. Chrome-spinel grains show a wide range in composition, with TiO2 ranging between ~1 and 24 wt%, Al2O3 between ~3 and 17 wt% and Cr2O3 between ~13–21 wt%.

Comparison to other brecciated eucrites: The petrology and chemistry of NWA 13993 are in agreement with those of other brecciated eucrites, as detailed by [1]. Plagioclase in this specimen is highly calcic and homogenous, which is a characteristic of many cumulate-type eucrites (basaltic eucrites, on the other hand, exhibit a considerable range in Ca content, An4-94 [2-3]). However, the Fs and Wo contents of pyroxenes, and the average mg# of low-Ca pyroxenes, are in better agreement with basaltic eucrites [1]. The range in compositions of chrome-spinel grains in NWA 13993 are more in agreement with those reported for basaltic eucrites (TiO2: 1-23 wt%, Al2O3: 3-18 wt%, Cr2O3: 18-59 wt%) than those reported for cumulate eucrites (TiO2: 0.5-12 wt%, Al2O3: 5-10 wt%, Cr2O3: 39-55 wt%) [4-5]. Texturally, NWA 13993 is more alike basaltic eucrites. At present, more measurements are needed to confirm this brecciated eucrite as cumulate or basaltic.