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Introduction: Mesosiderites are breccias usually composed of approximately equal amounts of Fe-Ni metal and 

silicates. The latter contains mineral and lithic clasts in a fine-grained matrix [e.g., 1-3]. Based on silicate textures, 

mesosiderites are subdivided into four subtypes (1 to 4), which are considered to reflect an increasing degree in met-

amorphism [4]. Coronas in olivine, a mineral always present in scares amounts (~2 vol%), are considered the result 

of thermal metamorphism formed by the reaction of olivine with a mesosiderite-like matrix assemblage [4-7|. Coronas 

consist mainly of orthopyroxene with abundant chromite and merrillite and minor plagioclase, clinopyroxene and 

ilmenite [5]. Although the coronas are texturally similar, they can be divided in different mineralogical distinct zones 

with variable development even within the same mesosiderite. Here, a transmission electron microscopy (TEM) cou-

pled with energy dispersive X-ray (EDX) analysis was performed to shed light on the main process under which the 

Vaca Muerta coronas were formed. 

 Results and Discussion: The studied samples of the Vaca Muerta (VM) mesosiderite (VM-DR; VM-O; VM-K, 

from ICATE collection) have one or two relatively large olivine grains (Fa35.6-39.6) with microscopically visible coro-

nas. They are characterized by a symplectite texture made up by one or two layered necklaces of chromite/ilmenite 

vermicular grains. Some pyroxenes related to the corona exhibit exsolution lamellae. The estimated equilibrium tem-

peratures between both phases (applying QUILF 6.42, [8]) is within the range of 1054± 28 to 900±50oC. As for the 

coexisting chromite-olivine in the coronas, the lower temperatures (~850oC) obtained applying the spinel-olivine ge-

othermometer [9], signals that the exchange of Mg and Fe between both phases continued during cooling to lower 

temperatures. 

A TEM bright field images (BFIs) montage associated with SAED pattern of focused-ion beam (FIB) sections 

across the corona, shows that the lamellar symplectite consists mainly of topotaxial chromite plates in a matrix of 

enstatite which is non-epitaxially adjoined with the olivine porphyroblasts. The later are almost free of defects. The 

topotaxial twin variants of chromite plates follow the primary crystallographic orientation relation (COR-I): 

[001]en//<112>chr; (100)en//{111}chr; (010)en//{110}chr. There is a secondary COR-II following also  (100)en//{111}chr 

but with [010]en//<112>chr pointing towards a Brownian rotational reorientation. Occasionally, there is almost epitaxy 

chromite plate in enstatite matrix being ~15 degree off the optimum COR by twisting {111}chr or the parallel (100)en 

to become noncoherent and hence an arbitrary{111}chr/(hkl)en interface with  <011>chr~//[021 ]en. These features indi-

cate that thermal metamorphism was not sufficiently long and/or did not reach temperatures high enough for an effec-

tive Brownian rotation of the confined particles. 

The concentration profiles of siderophile elements (Fe,Cr,Mn) in olivine turned out to be monotonous with an 

abrupt change across the olivine/enstatite interface according to point-count TEM-EDX analysis. This indicates that 

olivine alteration is about directional diffusion-controlled Liq+Ol→En+Chr reaction, as shown by [7] for the Emery 

and Morristown olivine coronas,  rather than a solid-state interdiffusion-controlled process. 
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