Ureilites: Mixes of a Vesta-like Parent Body and an Impactor from Proto-Mars.

S. J. Desch1, J. G. O’Rourke1, L. K. Schaefer2, T. G. Sharp3, and D. L. Schrader1.1, School of Earth and Space Exploration, Arizona State University, Tempe AZ 85287 USA. 2School of Earth, Energy and Environmental Sciences, Stanford University, Stanford CA 94035. 3Center for Meteorite Studies, Arizona State University, Tempe AZ 85287.

Corresponding author: steve.desch@asu.edu

Ureilites: Ureilites are unusual and enigmatic meteorites. They are as carbon-rich (~3 wt% C [1]) as carbonaceous chondrites, but compositionally resemble ordinary chondrites [2]. Their 50Ti and 54Cr abundances place them in the inner solar system [3], near 2.7 AU [4]. They are achondrites but saw only partial (~15%) extraction of melt [2]. Most (95%) ureilites are monomict with olivines of uniform Mg# varying from 74 to 96, strongly peaked at 80. Several properties (e.g., Δ17O and Δ18O, Fe/Mn ratios), correlate with Mg# [5]. The range of Mg# has been attributed to “smelting”: (Mg,Fe)2SiO4 + CaO (melt) + SiO2 (melt) + C → (Mg, Ca)SiO3 + Fe + CO (gas). The equilibrium Mg# depends on pressure and depth in the ureilite parent body (UPB) [6,7], but why ureilites would so preferentially sample Mg# of 80 is a mystery [8]. C content does not correlate with Mg# [9]. Pyroxene thermometers suggest the UPB last equilibrated at about 1050-1100°C [10], after peak temperatures ~1200-1300°C [2,11,12]. Thermal models including melt migration reproduce these temperatures if the UPB had radius ≈ 100-250 km and formed at τ = 0.6 Myr (relative to CAIs) [13]. Soon after τ = 5 Myr [14], the UPB was catastrophically disrupted by impact at ~5 km/s (consistent with typical S4 shock stages; [15]), as inferred from reduction rims around olivines attributed to “smelting” initiated by release of pressure by an unroofing event, followed by a quench in temperatures. The UPB must have broken into chunks < 10 m in size [16] that reasssembled into ureilite daughter bodies (UDBs) [2,17], from which ureilites derive. Impact shock would have produced the copious nanodiamonds in ureilites [18], but this does not explain the large (100 μm) single-crystal diamonds with δ13C zonning placed in the polymict ureilite Almahata Sitta MS-170, which formed in metallic melt in a planetary mantle at pressures ≈ 4 GPa [19,20].

Model for Ureilite Origins: We hypothesize the following. The UPB formed at 2.7 AU at τ = 0.6 Myr. Disk models predict it was 1.3wt% CAIs [21]. Its initial composition was like 0.63 H+0.33 CV+0.04 CI chondrites, similar to the 0.75 H+0.25 CV mix inferred for Vesta [22]. This composition yields Mg# 80 olivines and ~1wt% C. Some silicates at low pressures underwent equilibrium smelting, forming high-Mg# olivines. The smelted fraction constrains the peak pressure; we infer the UPB radius was 173 km. We interpret the ≈25% of olivines with Mg# < 80 to be from the impactor, mixed in during the impact. Its composition corresponds to end-member “A” of [5]. The impactor had 30% the mass of the UPB, consistent with [8], and had radius ≈115 km. It delivered metal and abundant C, including large diamonds. During reassembly into UDBs, temperatures were ~1100°C, so that silicates did not melt, but metallic melts from both bodies mixed, explaining HSE abundance trends [23]. Carbon was redistributed by the melt.

Largest Daughter Body: We further hypothesize that 15 Eunomia at 2.64 AU is the largest UDB. Based on the radii above and the 5 km/s impact speed, using [24] we estimate a radius of the largest UDB ~139 km; Eunomia’s radius is 132 km. Although the polymict ureilite Almahata Sitta derived from the F-type asteroid 2008 TC1 [25], most ureilites are spectrally associated with S-type asteroids [26]; Eunomia is the largest S-type asteroid. 15 Eunomia has an extensive and ancient collisional family with a dynamical pathway to deliver fragments to 2.55 AU [27]. We suggest the F-type asteroid 438 Zeuxo at 2.55 AU is from the Eunomian family, and 2008 TC1 derived from it and underwent drifted to the 3:1 resonance at 2.5 AU to reach Earth, consistent with its inferred dynamics [25].

Impactor Origin: Finally, we suggest the impactor derived from the proto-Martian surface at ~5 Myr, after magma ocean crystallization but before mantle overturn [28]. It would be Fe-rich bulk Mars, plus late-accreted carbonaceous chondrite material, with Mg# = 74-80. We find in oxygen isotopes, Mg#, and Fe/Mn it would match end-member “A” of [5]. The compositional similarity between the UPB (Mg# ~ 80) and the impactor is somewhat coincidental, but they did derive from similar starting materials. Ejection by the Borreli basin impactor would have generated ~100 fragments larger than 100 km in radius that would have impacted objects out to 2.9 AU at 5 km/s [29]. The impactor could have delivered diamonds, formed in Mars’s mantle at P > 4 GPa, to the UPB and UDBs.