Oxygen isotope systematics of porphyritic chondrules and their fragments in CH and CB chondrites.

D. Nakashima1,2, M. Kimura3,4, K. Yamada5, T. Noguchi5,6, T. Ushikubo5,6, and N.T. Kita5, 1Tohoku University, Sendai, Japan (dnaka@tohoku.ac.jp), 2WiscSIMS, University of Wisconsin-Madison, USA, 3NIPR, Tokyo, Japan, 4Ibaraki University, Mito, Japan, 5Kyushu University, Fukuoka, Japan, 6JAMSTEC, Kochi, Japan.

Introduction: Chondrules in carbonaceous chondrites including non-porphyritic chondrules in CH and CB chondrites show systematic trends that the $\Delta^{17}\text{O}$ ($= \delta^{17}\text{O} - 0.52 \times \delta^{18}\text{O}$) values increase with decreasing Mg# ($= \text{mol.}\% \text{MgO}/(\text{MgO}+\text{FeO})$) [e.g., 1-2], which are explained by an addition of ^{16}O-poor water ice as an oxidant to the ^{16}O-rich anhydrous precursors [e.g., 3]. In contrast, porphyritic chondrules in CH and CB chondrites show no systematic difference in the $\Delta^{17}\text{O}$ values between type I and II chondrules (−4.7‰ to +4.1‰ vs. −2.1‰ to +2.7‰; [2,4]), though the detailed relationship with Mg# is unclear. Here we report new SIMS oxygen isotope analyses of olivine and pyroxene fragments in the Asuka-881020 CH chondrite (15μm Cs$^+$ primary beam, WiscSIMS). We further discuss the $\Delta^{17}\text{O}$-Mg# systematics of the porphyritic chondrules in CH and CB chondrites.

Results and discussion: Thirteen of 20 fragments are FeO-poor with Mg# of 90.7 − 99.3 and others are FeO-rich with Mg# of 50.5 − 80.0. The oxygen isotope ratios plot along with the primitive chondrule mineral (PCM) line [1] with $\Delta^{17}\text{O}$ values from −5.0‰ to +3.2‰. These data are compared to the average $\Delta^{17}\text{O}$ values of the individual porphyritic chondrules (excluding relic grains; [2,4]) in $\Delta^{17}\text{O}$ versus Mg# plot in Fig. 1a. The $\Delta^{17}\text{O}$ ranges of FeO-poor and -rich fragments overlap those of the type I and II chondrules in CH and CB chondrites, respectively, suggesting that the olivine and pyroxene fragments are fragments of the porphyritic chondrules. Skeletal olivine-pyroxene chondrules may not be a source of the fragments, as they have a narrow range of $\Delta^{17}\text{O}$ values of −2.6 ± 1.4‰ [5].

The $\Delta^{17}\text{O}$ values of the type I chondrules and FeO-poor fragments increase with increasing Mg#, while those of the type II chondrules and FeO-rich fragments show no correlation with Mg# (Fig. 1a). Similarly, type II chondrules in CR and Tagish Lake-type chondrites have $\Delta^{17}\text{O}$ variations from ~−3‰ to +2‰ with no correlation with Mg# [6-7], which are are explained by an addition of ^{16}O-poor water ice to the ^{16}O-rich precursors [e.g., 3]. However, the positive $\Delta^{17}\text{O}$-Mg# correlation for chondrules and fragments with Mg# > 96 cannot be explained by this process, but may be explained by addition of ^{16}O-poor reductant to the ^{16}O-rich precursors or addition of ^{16}O-rich oxidant (water ice) to the ^{16}O-poor precursors. The latter case is less likely, as chondrules with Mg# of ~99 and $\Delta^{17}\text{O}$ of ~4‰ are not observed in other chondrites and oxides that inherited oxygen isotope ratios of water ice are 16O-poor [e.g., 8]. In the former case, chondrules with Mg# of ~96 and $\Delta^{17}\text{O}$ of ~4‰, which are the lower end of the positive $\Delta^{17}\text{O}$-Mg# correlation, may correspond to the 16O-poor precursors. Such chondrules are rarely observed in Acfer 094 (ungr. C3.0) and CR chondrites [1,9]. The 16O-poor reductant may be carbon-rich organics, given the two observations; 16O-poor organics in primitive chondrites [10] and heating experiments that produced Fo90 olivine from Fo90 olivine and graphite or diamond [11]. Heating experiments produced chondrules with δ^{18}O of +5.6‰ from type I chondrules with δ^{18}O of +6.5‰ and 5 wt% graphite [12], indicating oxygen isotope mass fractionation between the chondrules and oxidized carbon (CO or CO2). Fig. 1b shows the deviation of δ^{18}O values from the PCM lines ($\Delta^{18}\text{O}_{\text{PCM}}$) for the type I chondrules and FeO-poor fragments along with the $\Delta^{17}\text{O}$ values. The chondrules and fragments with high $\Delta^{17}\text{O}$ values have negative $\Delta^{18}\text{O}_{\text{PCM}}$ values. This suggests the oxygen isotope mass fractionation during the reduction and supports the view of addition of 16O-poor carbon-rich organics to 16O-rich precursors.

Fig. 1: (a) $\Delta^{17}\text{O}$ vs. Mg# of porphyritic chondrules and olivine and pyroxene fragments in CH and CB chondrites and (b) $\Delta^{17}\text{O}$ vs. $\Delta^{18}\text{O}_{\text{PCM}}$ of type I porphyritic chondrules and FeO-poor fragments in CH and CB chondrites.