MASS SPECTROMETRIC STUDY OF PEROVSKITE EVAPORATION FROM KNUDSEN CELL S. I. Shornikov and O. I. Yakovlev, Vernadsky Institute of Geochemistry & Analytical Chemistry of RAS, Kosygin st. 19, Moscow 119991, Russia, e-mail: sergey.shornikov@gmail.com, yakovlev@geokhi.ru **Introduction:** Calcium titanate CaTiO₃ (perovskite) is of particular interest for cosmochemical studies as a mineral that is part of the substance of refractory Ca–Al–inclusions (CAIs) and is the earliest object of the Solar system with unusual isotopic characteristics [1]. It is believed that perovskite is a polygenic material that combines a relict substance formed in the inner shells of supernova stars, and a condensation product from a high-temperature gas, and a crystallization product of a silicate melt [2, 3]. In this regard, experimental information on evaporation processes and thermodynamic properties of perovskite is of particular importance for understanding of their formation in CAIs. **Results and discussion:** We studied evaporation of perovskite in the temperature range 1791-2241 K and the CaO-TiO₂ melts in the temperature range 2241-2441 K from the Knudsen molybdenum effusion cell by the mass spectrometric method. The established molecular composition of the gas phase over perovskite and over the CaO-TiO₂ melts shows to evaporation according to reactions typical for the evaporation of individual oxides. The (CaTiO₃) presence in minor amounts in the gas phase testified to the occurrence of the following heterogeneous reactions [CaTiO₃] = (CaTiO₃). The values of partial pressures of vapor species (p_i) over perovskite (Fig. 1) and over the CaO-TiO₂ melts were determined by the Hertz-Knudsen equation. The CaO, TiO₂ and CaTiO₃ activities (a_i) were calculated from the partial pressures values (Fig. 2). They allowed to determine the values of mixing energy, as well as the enthalpy and entropy of perovskite formation equal to -39.88 ± 0.54 kJ/mol and 3.15 ± 0.28 J/(mol×K), respectively, and the melting enthalpy of perovskite at 2241 ± 10 K, equal to 47.61 ± 1.84 kJ/mol (per 1 mol compound) [4]. Fig. 1. The partial pressure values of vapor species over perovskite: Ca (1), CaO (2), Ti (3), TiO (4), TiO₂ (5), O (6), O₂ (7), CaTiO₃ (8). Fig. 2. The activities of CaO (1), TiO₂ (2) and CaTiO₃ (3) in the CaO–TiO₂ system, determined at the present study at 2250 K. According to the rules established earlier in [5] the change in the composition of the gas phase over perovskite in the temperature region 1700–2400 K (Table 1), calculated from the values of the oxide activity, shows an increase in the (CaTiO₃) content in the vapor by 10⁴ times. It should be taken into account when considering the perovskite fractionation during evaporation [1]. The present study was supported by the Russian Foundation for Basic Research (grant #19-05-00801A). | <i>T</i> , K | О | O_2 | Ca | CaO | Ti | TiO | TiO ₂ | Ti ₂ O ₃ | Ti ₂ O ₄ | CaTiO ₃ | |--------------|----|-------|-----|----------------------|----------------------|------|------------------|--------------------------------|--------------------------------|----------------------| | 1700 | 34 | 1.3 | 35 | 8.0×10 ⁻³ | 3.4×10 ⁻⁵ | 0.96 | 29 | 4.7×10 ⁻³ | 2.5×10 ⁻³ | 3.9×10 ⁻⁵ | | 2241 | 16 | 1.2 | 10 | 3.4×10 ⁻² | 2.8×10 ⁻³ | 8.2 | 64 | 0.13 | 0.11 | 6.6×10 ⁻² | | 2400 | 17 | 1.4 | 8.6 | 5.1×10 ⁻² | 6.0×10^{-3} | 11 | 62 | 0.15 | 0.12 | 0.39 | Table 1. The composition of the gas phase over perovskite (mol %). **References:** [1] Zhang J. et al. (2014) *GCA*, 140, 365–380. [2] Nazarov M. A. et al. (1984) *Meteoritika*, 43, 49–65 (in Russian). [3] Goswami J. N. et al. (1991) *Met. Planet. Sci.*, 26, 339. [4] Shornikov S. I. (2019) *Materials Processing Fundamentals. The Minerals, Metals & Materials Ser.*, doi: 10.1007/978-3-030-05728-2_23, 253–263. [5] Shornikov S. I. and Yakovlev O. I. (2015) *Geochem. Int.*, 53, 690–699.