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Introduction: The martian regolith breccia, Northwest Africa (NWA) 8114 and its pairs NWA 7034, 7475, 

7533 etc, offer the first opportunity to examine thermal conditions in the near-surface, near an impact crater on 

Mars. Regolith ejecta blankets on Mars are gradually modified by heating, transport and alteration processes, result-

ing in reprocessed rocks [1]. Some carbonaceous chondrite material has been incorporated, as indicated by the pres-

ence of Ni and Ir, making these samples impact-regolith breccias [2,3]. NWA 8114 contains a wide range of clasts 

from basalt to alkali feldspar, although olivine is largely absent. Iron oxides, Cl-apatite, chromite, and pyrite are also 

present in the clasts and matrix [2-6]. Accretionary clasts and dust rims could have formed in an ejecta plume, densi-

ty current [3] or during fallout [7], analogous to pyroclastic emplacement mechanisms. Hydrated iron oxides [5,8] 

and monazite-bearing apatite suggest some parts of the breccia experienced aqueous alteration [9]. A range of ages 

have been determined, with ancient ~4.4 Ga U-Pb [7] Sm-Nd [10] ages for some zircons and younger 1.1-1.7 Ga U-

Pb [7,11] U-Th-Pb [9] ages for other zircons [7], chlorapatite [11] and monazite [9] in NWA 8114. Here we report 

the results of our mineralogical study used to constrain the regolith’s thermal history. 

Methods:  An individual clast from NWA 8114 was separated and divided into 2 fragments, to probe both its 

age and mineralogy. One fragment was neutron-irradiated for 
40

Ar-
39

Ar 

dating. The other fragment was polished for SEM-EDX analysis. SEM, 

EPMA, FIB-STEM and synchrotron XAS, XRD, XRF and FTIR studies 

were carried out on three other polished sections as a comparison. 

Results: In polished section, a predominantly augitic clast shows up 

to 5% porosity and iron oxide grains (Fig. 1) and Fe K XANES indi-

cates it has up to 25% Fe
3+

/ΣFe. These features are consistent with our 

previous TEM work [12], showing high temperature partial breakdown 

of pyroxene to iron oxide and amorphous Al-silicate. A maximum 
40

Ar-
39

Ar age of 1130 Ma - 1250 Ma was obtained for the clast. 

Discussion: The observed oxidation and breakdown of pyroxene 

(also seen in paired stone NWA 7533 [13-14]) has some similarities 

with the breakdown of pyroxene in ureilites by impact smelting [15], 

albeit under much more oxidizing conditions on Mars, FMQ+2 to +4 

units [6]. Experimental shock analyses of pyroxene show that Fe
3+

/ΣFe 

can increase 2–6 times, even without free oxygen, possibly by incorpo-

rating H+ ions into the crystal structure [16]. We relate the maximum 
40

Ar-
39

Ar age of 1130  – 1250 Ma in the NWA 8114 clast to the impact 

shock event and subsequent high-temperature oxidative breakdown of 

many of the pyroxenes, immediately after the impact ejecta was depos-

ited within a regolith blanket. In other pyroxene clasts, feldspar veins 

crosscut the oxidized pyroxene and rims, suggesting temperatures that 

were near the basaltic eutectic, sufficient to remobilize and partially 

melt clasts. A simple Fourier cooling model suggests that a burial depth 

of 5 m is enough to maintain sufficiently high temperatures for ~30 days 

that could explain the pyroxene breakdown and partial melting. 
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Fig. 1. (A) BSE image of a separated clast 

showing mainly augite (aug) En24-39Fs13-

26Wo48-50, plagioclase (pl) inclusions, 

Ab15-74An12-84Or0-17 and a calcite vein and 

fine grained, accretionary rim. (B) BSE 

image of augite (inset, A) with iron oxide 

grains (white) and porosity (black). 
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