CALCIUM AND TITANIUM ISOTYPE SYSTEMATICS IN REFRACTORY INCLUSIONS FROM CM, CO, AND CR CHONDRITES.

L. Kööp1,2*, A. M. Davis1,2,3, A. N. Krot4, K. Nagashima5, S. B. Simon5. 1Department of the Geophysical Sciences, 2Chicago Center for Cosmochemistry, 3Enrico Fermi Institute, University of Chicago, Chicago, IL, 4HIGP/SOEST, University of Hawai‘i at Mānoa, Honolulu, HI, 5Institute of Meteoritics, University of New Mexico, Albuquerque, NM. *E-mail: koeop@uchicago.edu

Introduction: Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials that formed in the Solar System [1]. They also preserve larger nucleosynthetic anomalies than later-formed Solar System objects [1,2]. Nucleosynthetic anomalies are commonly observed in coarse-grained igneous CAIs from CV chondrites [e.g., 2], in FUN CAIs (fractionated and unidentified nuclear effects) [3 and ref. therein], and in hibonite-rich CAIs from CM chondrites [4–7]. In contrast, the degree of nucleosynthetic variations in CAIs from other chondrite groups is not well constrained. Here we report on Ca and Ti isotopic compositions of 24 CAIs from CM, CO, and CR chondrites.

Methods: Calcium and titanium isotopic compositions were determined by secondary ion mass spectrometry using the Cameca ims-1280 at the University of Hawai‘i. The protocol was similar to that reported previously [6,7]. For Ca and Ti-rich phases (hibonite, Al,Ti-pyroxene), isotopic compositions of both elements were measured, but for Ti-poor phases (mellile and sometimes grossite), only Ca isotopes were measured.

Samples: The CM CAIs were separated from Murchison (Field Museum specimens ME 2752 and ME 2644) and include SHIBs (spinel-hibonite-inclusions), a mellile-rich CAI (previously described in [7]); a mass-fractionated grossite-rich CAI, and two single hibonite crystals. The CO CAIs include two concentrically zoned objects (31-2 from DOM 08006 and 16-1 from DOM 08004) consisting of, from inside outward, hibonite, grossite, spinel, perovskite, mellile, clinopyroxene, enstatite, and forsterite [8,11]. The other CO CAIs studied are two hibonite-grossite-rich objects (56-1 from DOM 08006 and 26-1 from DOM 0804; reported in [8]) and the Sc-rich Ormans CAI OSCAR [9]. The CR CAIs are from El Djouf 001 (MK #5), GRA 95229 (-17 #7), and Gao-Guene (b) (FUN CAI #3). The mineralogy, O and Al-Mg isotopic systematics of the CR CAIs have been previously reported in [10].

Results: CM CAIs: Of the 15 studied objects, only two have clearly resolved anomalies in 48Ca and/or 50Ti. These are a spinel-hibonite object (δ48Ca ~ -27‰, δ50Ti ~ -30‰) and 31-2 (δ48Ca ~ -11‰, δ50Ti ~ 4‰). Hibonite, grossite, and Al,Ti-diopside were analyzed individually in both CAIs (mellilitie in 31-2 as well), which revealed no variations between different minerals within the same CAI. Anomalies were also found in the two hibonite-grossite-rich CAIs: 56-1 (δ48Ca ~ -10‰, δ50Ti ~ 0‰) and 26-1 (δ48Ca ~ -21‰, δ50Ti ~ -30‰). OSCAR has no resolved anomalies in 48Ca and 50Ti.

CR CAIs: No resolved anomalies were found in the 26Al-rich CAI GRA 95229-17 #7. The 26Al-poor CAI El Djouf 001 MK #5 has a large 48Ca excess (~20%). The FUN CAI Gao-Guene (b) #3 also has a large 48Ca excess (27%).

Discussion and Conclusion: Our study of CAIs from three different chondrite types shows that large nucleosynthetic anomalies can be found in CAIs from all three chondrite groups, and are, therefore, not limited to CM hibonites. For a subset of the studied CAIs, Al-Mg systematics have been previously reported [7,8,10]. Combined with our new Ca and Ti isotope measurements, the data for CM, CO, and CR chondrite CAIs are generally consistent with the mutual exclusivity relationship between large nucleosynthetic anomalies and incorporation of considerable amounts of live 26Al. A possible exception may be FUN CAI Gao-Guene (b) #3, which has a large 48Ca excess in spite of a possibly relatively high inferred 26Al/27Al ((2.0±1.7)×10^-5) [10]).

The CO CAIs 31-2 and 56-1 have been interpreted as equilibrium condensates [11]. If true, the sizable nucleosynthetic anomalies in these two CAIs suggest that nucleosynthetic anomalies were preserved in the gas phase, likely due to large-scale nucleosynthetic heterogeneity in the early Solar System. The lack of isotopic variation between different phases would suggest that no significant dilution took place during condensation.