LI-BE-B AND AL-MG ISOTOPIC COMPOSITIONS IN CH AND CH/CB CAIS: IMPLICATION FOR THE ORIGIN OF 10Be IN THE EARLY SOLAR SYSTEM.

K. Fukuda1, W. Fujiyama2, H. Hiyagon3, N. Takahata3, T. Kagoshima3, N. Sugihara1, and Y. Sano3. 1Department of Earth and Planetary Science, The University of Tokyo (k.fukuda@eps.s.u-tokyo.ac.jp), 2College of Science, Ibaraki University, 3Atmosphere and Ocean Research Institute, The University of Tokyo.

Introduction: Beryllium-10, which decays to 10B with a half-life of 1.4 Myr [1], is considered as a key indicator of irradiation processes in the early solar system (ESS). However, recent numerical studies [2,3] have demonstrated that 10Be can be produced by stellar processes with neutrino reactions, which rendered reconsideration of the origin of 10Be in the ESS. The stable isotopes of Li, Be, and B are also made by irradiation processes [e.g., 4,5]. Thus, the quantitative understanding of initial 10Be abundances and stable Li-Be isotopic compositions would provide important constraints on the origin of 10Be in the ESS. Previous studies have provided hints for in-situ irradiation signatures of 6Li/7Li, initial 10Be/11B and initial 10Be abundances in Calcium, Aluminum-rich Inclusions (CAIs) [e.g., 4-8]. However, most of Li-Be-B data come from CAIs in CV and CM chondrites that have experienced thermal and/or aqueous alteration processes. Therefore, it is possible that some of the observed isotopic compositions might be disturbed by secondary processes. In the present study, we have conducted Li-Be-B and Al-Mg measurements on CAIs in least-altered CH and CH/CB chondrites.

Samples and Analytical Methods: Seven melilite-rich CAIs and one gossite-rich CAI were selected from the Sayh al Uhaymir 290 (CH) and the Isheyevo (CH/CB) meteorites. Petrographic observations and major element concentrations of these CAIs were obtained with FE-EPMA at The Univ. of Tokyo. Lithium, Be, and Al-Mg measurements were performed using a NanoSIMS 50 at Atmosphere and Ocean Research Institute (AORI), The Univ. of Tokyo. The instrumental mass fractionation was determined from measurements of NIST SRM610, 612 glasses and a Madagascar hibonite. The Be/B and Al/Mg relative sensitivity factors were determined from measurements of synthetic melilitic glasses [9] and a Madagascar hibonite.

Results and Discussion: All CAIs studied here do not show resolvable excesses in 26Mg, which is in agreement with previous studies [e.g., 10]. In contrast to Al-Mg systematics, five out of 8 CAIs show highly variable initial 10Be/9Be ratios ranging from 6.9 to 33×10^{-4}. The observed variations in initial 10Be/9Be ratios were produced by in-situ cosmic ray irradiation. 7Li/6Li ratios would be affected by spallation products. However, all CAIs with resolvable 10Be excesses show the chondritic isotopic ratio (7Li/6Li = 12.06 [11]) within uncertainties. In order to understand the observed relationship between initial 10Be/9Be and 7Li/6Li, we estimated irradiation effects on 7Li/6Li in CAIs using the observed initial 10Be/9Be ratios and spallation production ratios [12]. Considering low Li concentrations in observed CAIs (26 to 63 ppb), this simple calculation suggests that the observed 7Li/6Li ratios are inconsistent with in-situ irradiation of refractory solids. This could be attributed to: (1) isotopic fractionation from spallogenic 7Li/6Li ratios, (2) condensation from an irradiated chondritic gas, or (3) partial loss of spallogenic Li and isotopic exchange with a chondritic gas, (4) 10Be was not produced by solar cosmic ray irradiation, but by stellar processes [2,3]. (1) is unlikely because Mg and B isotopes do not show mass dependent fractionations. (2) is a simple interpretation because the observed 7Li/6Li ratios are nearly chondritic. (3) is possible because petrographic observations suggest that some of the CAIs were probably once molten. (4) is also possible because neutrino-induced nucleosynthesis [2,3] predominantly produces 7Li, which is in sharp contrast to the case for cosmic ray irradiation. [3] has pointed out that low-mass supernovae provided ~8% of 7Li in the solar system but a negligible amount of 10Li. If the stellar products were introduced during or after the solar system formation, 7Li/6Li ratios would have been shifted to 7Li-rich compositions from the chondritic value. Unfortunately, our analytical precision does not resolve excesses in 7Li from the chondritic value. High precision Li isotope measurements are required to check this scenario.