CHARACTERIZATION OF MUNDRABILLA IRON IAB-UNG METEORITE USING SCANNING ELECTRON MICROSCOPY AND MÖSSBAUER SPECTROSCOPY.

M. V. Goryunov and M. I. Oshtrakh, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation, E-Mail: oshtrakh@gmail.com.

Introduction: Mundrabilla meteorite was found in 1966 in the Western Australia and classified as iron IAB-ung (medium octahedrite). A fragment of this meteorite have been characterized using optical microscopy, scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS) and Mössbauer spectroscopy with a high velocity resolution for the first time. This work presents the preliminary results of Mundrabilla iron meteorite investigation by mentioned techniques.

Experimental: Polished slice of Mundrabilla iron meteorite fragment was analyzed by means of optical microscope Axiovert 40 MAT (Carl Zeiss) and scanning electron microscope SIGMA VP (Carl Zeiss) with an X-max 80 energy dispersive spectroscopy device (Oxford Instruments). Then thin powder obtained from the fragment surface was studied using Mössbauer spectroscopy with a high velocity resolution at room temperature.

Results: Optical microscopy showed the presence of α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases as well as plessite structures α-Fe(Ni, Co)/α_2-Fe(Ni, Co)$+\gamma$-Fe(Ni, Co) in Mundrabilla iron IAB-ung meteorite (see Fig. 1a). The content of Ni in the α-phase was found about \sim7 at.%) while that in α_2-Fe(Ni, Co) phase was in the range \sim10–23 at.%. The content of Ni in the γ-phase was found in the range \sim29–40 at.%) including concentration region for paramagnetic γ-Fe(Ni, Co). The average Ni content in plessite structure was found \sim12 at.%. The Mössbauer spectrum of Mundrabilla iron meteorite is shown in Fig. 1b. This spectrum demonstrates asymmetrical six-line shape which required more than one magnetic sextet for the best fit. The result of the best fit shows the presence of 5 magnetic sextets and small paramagnetic singlet. Basing on the hyperfine parameters these components can be assigned to α_2-Fe(Ni, Co), α-Fe(Ni, Co) and γ-Fe(Ni, Co) phases in the magnetic state and γ-Fe(Ni, Co) phase in the paramagnetic state. These results are compared with the Mössbauer data obtained for some other iron meteorites in [1, 2].

Fig. 1. Mundrabilla iron IAB-ung meteorite: optical microphotograph of the polished slice (a) and the room temperature Mössbauer spectrum, 1–6 are the results of the best fit, differential spectrum is shown below (b).

Acknowledgements: This work was supported in part by the Ministry of Education and Science of the Russian Federation (the Project # 3.1959.2017) and by Act 211 Government of the Russian Federation, contract № 02.A03.21.0006. Contribution to the study from M.V.G. was funded by the RFBR according to the research project № 16-32-00151 mol_a.

References: