MEAN ATOMIC WEIGHT OF BRAUNSCHWEIG METEORITE.

M. Szurgot¹, R. A. Wach² and R. Bartoschewitz³, ¹Lodz University of Technology, Center of Mathematics and Physics, Al. Politechniki 11, 90 924 Lodz, Poland, (<u>mszurgot@p.lodz.pl</u>), ²Lodz University of Technology, Institute of Applied Radiation Chemistry, Wróblewskiego 15, 93 590 Lodz, Poland, (wach@mitr.p.lodz.pl), ³Bartoschwitz Meteorite Laboratory, Weiland 37, D-38518 Grifhorn, Germany, (Bartoschewitz.meteorite-lab@t-online.de)

Introduction: Braunschweig meteorite is a typical L6 chondrite, moderately shocked (S4) which fell on April 23rd, 2013 in Germany [1]. Mean atomic weight is important to characterize minerals, rocks, planets, moons and asteroids, and is important to classify meteorites, and to characterize meteorite parent bodies [2-5]. The aim of the paper was to determine and analyze mean atomic weight and mean atomic number of the Braunschweig meteorite.

Results and discussion: Bulk elemental composition of the meteorite [1] has been used to calculate mean atomic weight *Amean* and mean atomic number *Zmean* using following formulas:

$$Amean = \sum wi / \sum (wi/Ai),$$

$$Zmean = \sum wi / \sum (wi/Zi),$$
(1)
(2)

where wi(wt%) is the mass fraction of *i*th element, Ai is atomic weight of *i*th element, and Zi is atomic number of *i*th element.

Apart from the bulk composition data, also Fe/Si ratio, grain density dgrain, and magnetic susceptibility χ were used to predict *Amean* values using *Amean*(*Fe/Si*), *Amean*(*dgrain*), and *Amean*(*log* χ) relationships, recently established by Szurgot (e.g. [2-5]):

$Amean(Fe/Si) = 5.72 \cdot Fe/Si + 20.25,$	(3)
$Amean(dgrain) = 7.51 \cdot dgrain - 2.74,$	(4)
$Amean(log\chi) = 1.49 \cdot log\chi + 16.6,$	(5)
$A(Fe/Si, dgrain, \gamma) = (Amean(Fe/Si) + Amean(dgrain) + Amean(log \gamma))/3.$	(6)

Table 1 compiles values of *Amean, Zmean* and *Amean/Zmean* ratios calculated for Braunschweig, Sołtmany, and average values for L6 chondrites. Data concern falls, and composition of meteorites does not include H₂O.

Table 1 Mean atomic weight Amean,	mean atomic number	Zmean, Amean/Zmean r	atio, and Fe/Si atomic ratio of
Braunschweig, Soltmany and mean for	L6 chondrites.*Soltm	any's and L6's data were	e established by Szurgot [2].

Meteorite	Amean (Bulk composition)	Zmean	Amean/Zmean	Fe/Si atomic ratio
Braunschweig L6	23.68	11.72	2.021	0.587
Sołtmany L6	23.97*	11.85	2.022	0.588*
L6 Average [#]	24.06 ± 0.16 *	11.89	2.023 ± 0.002	$0.60 \pm 0.04 *$
L6 Range	23.6 - 24.4	11.7-12.1	2.021 - 2.027	0.53 - 0.65*

Table 2 Amean values of Braunschweig determined by bulk composition (eq.(1)), and by relationships (eqs (3)-(6)).

Amean (Bulk composition)	Amean(Fe/Si)	Amean(dgrain)	Amean(logy)	A (Fe/Si, dgrain, χ)
23.68	23.61	23.94*	23.65*	23.73 ± 0.18
	3		#	

*Braunschweig Fe/Si = 0.587, dgrain = 3.553 g/cm³ [1], and $log\chi = 4.73$ [1]. * Average for ten L6 chondrites

Tables 1 and 2 show that Braunschweig Amean = 23.68 is close to the mean atomic weight of L6 chondrite falls (average: 24.06 ± 0.16, range: 23.6-24.4), and Braunschweig *Fe/Si* atomic ratio (0.587) is close to an average for L6 falls: 0.60 ± 0.04, and is within the L6 range: 0.53 - 0.65 [2]. In addition, Braunschweig *Amean/Zmean* ratio (2.021) is close to Sołtmany *Amean/Zmean* ratio (2.022) and to the average *Amean/Zmean* L6's ratio: 2.023.

Conclusions: Mean atomic weight, mean atomic number, *Amean/Zmean* ratio, and *Fe/Si* ratio indicate that Braunschweig belongs to L6 chondrites, as previously established [1]. *Fe/Si* atomic ratio, grain density, and magnetic susceptibility satisfactorily predict *Amean* values for Braunschweig.

References: [1] Bartoschewitz et al. 2017. *Chemie der Erde – Geochemistry* 77:207-224 [2] Szurgot M. 2015. *Acta Societatis Metheoriticae Polonorum* 6:107-128. [3] Szurgot M. (2015) *LPSC XLVI*, Abstract #1536. [4] Szurgot M. (2016) *LPSC XLVII*, Abstract #2180. [5] Szurgot M. (2017) *LPS XLVIII*, Abstract #1130.