STANNERN-TREND EUCRITE PETROGENESIS: AN ASSESSMENT OF PARTIAL MELT CONTAMINATION MODELS VIA EXPERIMENTAL PETROLOGY

S. D. Crossley1, R. G. Mayne1, N. G. Lunning2, T. J. McCoy2, R. C. Greenwood3, and I. A. Franchi3. 1Texas Christian University Monnig Meteorite Collection, School of Geology, Energy, and the Environment, 2950 West Bowie SWR 207, Texas Christian University, Fort Worth, TX 76109 (s.crossley@tcu.edu), 2Smithsonian Institution, NMNH, Washington DC, 20560, USA, 3Open University, Planetary and Space Sciences, The Open University, Milton Keynes MK7 6AA, UK.

Introduction: Stannern-trend eucrites are problematic in simple petrogenetic models for HEDs, as they cannot be explained as either products of fractional crystallization in a magma ocean, or as partial melts of a chondritic precursor [1]. Currently, the most widely accepted petrogenetic model asserts that they may represent the products formed when Main-Group-Nuevo-Laredo-trend eucritic magmas were contaminated by melts released during fusion of eucritic crust [1]. Melting experiments were conducted with eucrites at near-solidus temperatures in order to determine carrier phases and transport mechanisms for incompatible elements [2]. These experiments at near-solidus temperatures did not yield enough melt product in some samples for analysis [2]. However, we expand upon previous experimental conditions (i.e. increasing temperature) to yield a greater percentage partial melt, which can be analyzed and used to test the currently accepted model of Stannern-trend eucrite petrogenesis. Specifically, a composition enriched in incompatible elements (i.e. Ti and LREEs), but otherwise similar in bulk composition to main-group eucrites, should be possible to reproduce from the assimilation of a partial melt product with a main-group eucritic composition. To most accurately replicate vestan petrologic processes, the starting material would need to meet a set of petrologic and geochemical criteria in order to reflect the petrogenetic processes involved in the formation of Stannern-trend eucrites.

Starting Material: The starting material for experimentation must be an unbrecciated, unequilibrated main-group eucrite that is preferably fine-grained and rich in mesostases. In June 2015, the Monnig Meteorite Collection at TCU acquired the main mass (510 g) of NWA 8562, an unbrecciated, unequilibrated main-group eucrite [3,4]. The $\Delta^{17}O$ value of the sample plots close to and within error of the HED fractionation line of [5] and indicates that NWA 8562 is an isotopically normal member of the HED suite [4].

Petrographic characterization. Two thin sections of the meteorite were examined to characterize the suitability of NWA 8562 for petrologic experimentation. NWA 8562 is composed of approximately 60% pyroxene and 35% plagioclase, with accessory silica, ilmenite, and troilite [3]. Most plagioclase range from <10µm to ~80 µm. Pyroxenes retain igneous zonation and range from pigeonite to ferro-augite [3]. The size of pyroxenes range from <10µm to ~100 µm. The presence of metastable ferro-augite and Fe-rich mineral endmembers places NWA 8562 within the Type 1 eucrite classification [6]. Some shock mosaicism is present in pyroxene.

Experimental & Analytical Methods: Following experimental techniques established in [2], we prepared four samples (~0.3-0.4 g each) of NWA 8562, and placed each sample in an alumina crucible inside a 1 atm gas mixing furnace. The four experiments were run at 1050, 1100, 1150, and 1200°C for 24 hours at log fO2 = IW-0.5. At the end of the run time, the samples were drop-quenched in water. Major element geochemistry has been gathered via electron microprobe for both starting material and experimental products. Trace elements have been measured for bulk composition via ICP-MS, and their distribution in both unheated and heated samples was measured using LA-ICP-MS.

Preliminary Results: Experiments yielded approximate melt fractions of <5, 20, 50, and >95%, respectively. Melting occurs most extensively in mesostasis-rich regions between plagioclase and pyroxene. Fe-rich pyroxenes are also major contributors in low-percent melts. Major element geochemical analysis of the low melt-fraction products (<5%) shows a strong enrichment in TiO$_2$, P$_2$O$_5$, K$_2$O, and SO$_3$, relative to bulk composition, and depletion in Cr$_2$O$_3$, Al$_2$O$_3$, MgO, and NiO.

Discussion: Simple mixing equations, such as those used in [1], applied to TiO$_2$ and Mg# can yield products within the Stannern-trend compositional range. TiO$_2$ is sourced from ilmenite, chromite, and iluvollines. P$_2$O$_5$ is largely derived from mesostasis, possibly metasomatic, fayalite in these experiments. Contribution of phases introduced through metasomatic processes will be considered with regard to [1]. We will also quantitatively assess the application of this data and trace element concentrations within the constrains of [1] in order to ascertain its validity.