NOBLE GASES IN NAKHLA AND THREE NAKHLITES MILLER RANGE 090030, 090032, AND 090136.
K. Nagao1*, M. K. Haba2, J. Park34, J. Choi1, J. M. Baek1, C. Park1, J. I. Lee1, M. J. Lee1, T. Mikouchi2, L. E. Nyquist1, G. F. Herzog3, B. D. Turri1, F. N. Lindsay3, J. S. Delaney1, and C. C. Swisher III1. 1Korea Polar Research Institute (KOPRI), 26 Songdorimae-ro, Yeonsu-gu, Incheon 21990, South Korea, 2Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland, 3Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA, 4Kingsborough Community College, Brooklyn, NY 11235, USA, 5Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, 6XI/NASA-JSC, Houston TX 77058, USA, 7Department of Earth and Planetary Science, Rutgers University, Piscataway, NJ 08854, USA, *e-mail: nagao@kopri.re.kr.

Introduction: Nakhlites are cumulates consisting of mostly magnesian augite. The nakhlites differ from shergottites in 1) having generally higher volatile contents; 2) being LREE-enriched [1, 2]; 3) having essentially no features indicating strong shock; and 4) showing clear evidence – e.g., the presence of iddingsite - for low-temperature aqueous alteration on Mars [3, 4]. Ref. [5] showed that the 129Xe/132Xe of iddingsite from the nakhlite Lafayette can be as high as 2.04 ± 0.28 and 84Kr/132Xe as low as 6 ± 3. These ratios differ from terrestrial and planetary values and are thought to indicate the presence of elementally fractionated Martian atmosphere trapped during aqueous alteration [5]. Young 40Ar/39Ar ages, 0.6–0.7 Ma for a component in the paired nakhlites MIL 090030, MIL 090032, MIL 090136 (henceforth M30, M32, and M136) have been attributed to iddingsite [6]. We measured noble gas compositions of bulk samples from Nakhlite and from M30, M32, and M136, with special attention to possible contributions from alteration products. Noble gas data for MIL 03346 (M346) measured by [7] are also considered.

Experimental method: Elemental and isotopic compositions of noble gases were analyzed using a noble gas mass spectrometer (modified-VG5400) at the University of Tokyo, which was moved to KOPRI in 2015. Stepwise heating methods, 8 steps from 400 to 1800 ºC and 9 steps from 300 to 1800ºC, were applied to Nakhla (126.4 mg) and to M30 (43.7 mg), M32 (44.3 mg), and M136 (49.0 mg), respectively, to extract noble gases from the samples.

Results and discussion: Most of the He and the radiogenic 40Ar were released at low temperatures (600–900°C), while release peaks of Kr and Xe were different among the samples at rather higher temperature range (600-1800°C). Neon released at temperatures lower than 1600°C was mostly cosmogenic. Cosmogenic 3He concentrations are (211–227)×10⁻⁹ cm³STP/g for 3 MIL 09s and Nakhla; M346 has a slightly lower concentration of (171–193)×10⁻⁹ cm³STP/g. Cosmogenic 21Ne concentrations for 3 MIL 09s are (21.6–22.9)×10⁻⁹ cm³STP/g, in good agreement with the values reported for Yamato nakhlites [8]. The data indicate a common ejection event for many nakhlites, for which cosmic ray exposure ages were so far reported. Somewhat higher concentrations of cosmogenic 21Ne, (25.9–30.3)×10⁻⁹ cm³STP/g, in Nakhla and M346 may reflect a higher 21Ne production rate.

A high 129Xe/132Xe ratio (>2.6) suggests a Martian atmospheric origin [9]. All the MIL nakhlites released Xe with 129Xe/132Xe ratios ranging 2.22–2.37 at temperatures from 1000 to 1400°C. Slightly lower ratios of 1.95–2.13 were observed at the lowest temperatures, 300°C (M30 and M32) and 400°C (M346). High 129Xe/132Xe ratios for low-T extractions could be from the products of aqueous alteration; high 129Xe/132Xe ratios for high-T extractions may be from the Martian interior as suggested for Ar by [10]. At low T and in contrast to the 3 MIL09 nakhlites, M136 and Nakhlite showed distinctly lower 129Xe/132Xe ratios of 1.37 and 1.01, respectively. M136 and Nakhlite may have lost some Xe-bearing material either during laboratory processing or as a result of weathering [7]. In plots of 129Xe/132Xe vs. 84Kr/132Xe, MILs show high 129Xe/132Xe and low 84Kr/132Xe (<1) at both low (300–400°C, exclude M136) and high (800–1600°C, different among the samples) temperatures. Nakhlite is clearly different in the sense that the ratios (129Xe/132Xe ≈ 2 and 84Kr/132Xe ≈ 6) for 800 < T < 1400°C are close to those of iddingsite [5]. M346 shows remarkably high 40Ar/36Ar, 36Ar, 38Ar36Ar ratios (>5000) in the temperature range of 500–900°C, reflecting low concentration of trapped 36Ar in this sample. Taken together, these data indicate heterogeneous noble gas compositions among the nakhlites even though they were ejected from Mars by a single impact event.