FORMATION OF P-RICH OLIVINE IN DAG 978 CARBONEOCEOUS CHONDRITE THROUGH FLUID-ASSISTED METAMORPHISM

A. C. Zhang1,2, Y. Li1, J. N. Chen1, L. X. Gu1, and R. C. Wang1, State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China (achang@nju.edu.cn), 2Lunar and Planetary Science Institute, Nanjing University, Nanjing 210046, China, 3Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

Introduction: Olivine in terrestrial and extraterrestrial igneous settings usually contains very low P2O5, due to a low olivine/melt partition coefficient for P (~0.1; [1]). However, P-rich olivine (P2O5>1 wt%) has also been described in a few terrestrial and extraterrestrial samples ([2], and references therein). It was suggested that P-rich olivine is a metastable phase during rapid crystallization from high-temperature melts, which has a high P activity, but low Si activity. Recently, during surveying the concentrations of minor elements in olivine in carbonaceous chondrites, we observed that a few lath-shaped olivine grains in a type 3.5, ungrouped carbonaceous chondrite Dar al Gani (DaG) 978 contain high P2O5 (up to 5.5 wt%). Here, we report the detailed texture and mineralogy of the P-rich olivine and discuss its origin.

Results: Olivine in DaG 978 has a large variation of occurrence [3]. It mainly occurs in chondrules and refractory inclusions. A few lath-shaped olivine grains, texturally replacing low-Ca pyroxene, are also observed in chondrules and chondrule fragments [3]. A few of them contain bright, submicron-sized inclusions on the BSE images. Most of the olivine grains in refractory inclusions and those included in low-Ca pyroxene of chondrules are Fe-rich (Mg# = 69-75), although a few olivine grains contain Mg-rich cores (Mg# = 89-100). They contain very low contents of P2O5 (0.03 wt%), Al2O3 (0.01-0.16 wt%), and Cr2O3 (0.02-0.10 wt%). On the contrast, the lath-shaped olivine (Mg# = 66-72) contains high P2O5 contents ranging from zero to 5.53 wt%. Meanwhile, the Al2O3 and Cr2O3 are 0.02-1.10 wt% and 0.05-0.91 wt%, respectively. In a chondrule fragment containing lath-shaped olivine, FeNi metal, troilite, Cr-rich hercynite, and Ca-phosphate minerals are also observed. We prepared a TEM section of lath-shaped olivine from this chondrule fragment by using FIB technique. Our TEM observations reveal that the bright, submicron-sized inclusions in the lath-shaped olivine are Cr-rich hercynite. Beside Cr-rich hercynite, the lath-shaped olivine is associated withapatite and merrillite. Some of the apatite and merrillite grains together with Cr-rich hercynite are included in plagioclase. The TEM-EDS spectra of some lath-shaped olivine grains exhibit a high peak for P while no peak for Ca is observed. The TEM elemental mapping shows that P distributes heterogeneously in different olivine grains.

Discussion and conclusions: Although P-rich olivine in previous studies all was interpreted having formed through rapid crystallization from high-temperature melts [2,4], lack of igneous texture indicates that the P-rich olivine in DaG 978 is not a product of rapid crystallization from melts. Instead, its origin should be closely associated with the origin of lath-shaped olivine in carbonaceous chondrites, which has been extensively studied. Fluid-assisted metamorphism is the widely-accepted formation mechanism of lath-shaped olivine [5]. This interpretation is also supported by our observations. Meanwhile, our observations further indicate that the lath-shaped olivine in DaG 978 formed during the interaction between fluid and low-Ca pyroxene in chondrules. First, the petrographic feature indicates lath-shaped olivine formed through replacing low-Ca pyroxene. Second, the presence of Cr-rich hercynite could be another piece of evidence. Low-Ca pyroxene in chondrules of DaG 978 usually contains Al2O3 and Cr2O3 higher than olivine [3]. When low-Ca pyroxene is replaced by secondary olivine, Al and Cr would incorporate into oxide minerals (i.e., hercynite or chromite). The presence of Cr-rich hercynite in DaG 978 can also exclude the direct precipitation of lath-shaped olivine from an aqueous solution, because Cr is immobile element in aqueous solution. Third, FeNi metal and troilite that are associated with the lath-shaped olivine, remain intact. Therefore, the lath-shaped olivine is not formed through replacement of FeNi-metal ± sulfide nodules. In addition, the heterogeneous distribution of P among different olivine grains and coexistence with Ca-phosphate minerals indicates an inequilibrium origin from a localized high-P condition.

In summary, the P-rich olivine in DaG 978 should have formed during a thermal event while the low-Ca pyroxene was replaced by a P,Cl,Fe-rich fluid.