
Introduction: Analyses of comet 81P/Wild 2 samples returned from the Stardust mission have uncovered surprising similarities to meteoritic material, including the identification of inner solar system grains [1-3]. The TEM characterization of terminal particle (TP) 4 from Stardust track #147 revealed an assemblage consisting of symplectically intergrown pentlandite and nanocrystalline magnetite coexisting with high-Ca pyroxene [4]. Mineralogically similar cosmic symplectites (COS) containing pentlandite and magnetite in the primitive Acfer 094 meteorite are highly depleted in 16O (18O, 34S \sim 180 %) [5-7]. This isotopic signature is proposed to record alteration with primordial solar nebula water. Conversely, the normal O isotopic composition of the Stardust COS indicates alteration by a different aqueous reservoir, perhaps on the comet [8]. In this study, we analyzed the Wild 2 COS for S isotopes to further constrain its origin.

Experimental: Thin sections of TP4 (12 μm) were produced and their mineralogy was thoroughly characterized by TEM. Two of the sections were analyzed for O isotopes by isotopic imaging in the JSC NanoSIMS 50L. The sample in one of the slices was completely consumed. The remaining material in the adjacent slice was analyzed simultaneously for 16O, 33S, 34S, and 30Fe16O in electron multipliers using a Cs⁺ primary ion beam. Quasi-simultaneous arrival (QSA) can have a significant effect on S isotopic ratios when using electron multipliers, resulting in undercounting of 33S [9]. Canyon Diablo troilite (CDT) was measured numerous times to deduce a correction factor for QSA and ensure measurement reproducibility. Isotopic ratios are reported relative to CDT.

Results and Discussion: The Wild 2 COS is enriched in the heavy S isotopes relative to CDT (34S = 6.5 ± 1.6 ‰; 33S = 5.1 ± 0.7 ‰, 1e). The degree of 33S enrichment indicates mass-independent fractionation (MIF) with Δ^{33}S = 3.9 ± 1.7 ‰. MIF of S has been observed in some chondrites (Δ^{33}S up to 011‰) [10], but this effect has not been identified in sulfides from carbonaceous chondrites [11] or IDPs [12]. S isotopic analysis of Stardust impact craters also did not reveal MIF or anomalies, save for one potential 33S-rich presolar sulfide [13]. Measurement errors on these impact craters were much larger than those in this study, however. MIF of S has been proposed to result from heterogeneities in the solar nebula from nucleosynthetic components [14] or photochemical irradiation of solar nebula gas [10]. Presolar SiC grains are observed to have 33S enrichments [15, 16] contrary to the S isotopic composition of the cometary COS. The S isotopic composition more likely reflects irradiation of nebular gas.