NEW INDIVIDUALS FROM THE ALMAHATA SITTA STREWN FIELD: OLD FRIENDS AND BRAND-NEW FELLOWS. A. Bischoff, S. Ebert, M. Patzek, M. Horstmann, A. Pack, J.-A. Barrat, and S. Decker. 1Institut für Planetologie, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany. E-mail: bischoa@uni-muenster.de. 2Uni Göttingen, Geowissenschaftliches Zentrum, Goldschmidtstr. 1, 37077 Göttingen, Germany. 3Université de Bretagne Occidentale, 29280 Plouzané, France. 4Meteorite-Museum, Oberstr. 10a, 55430 Oberwesel, Germany.

Introduction: After asteroid 2008 TC₃ impacted Earth in 2008, a highly diverse range of meteorite types was identified among the numerous meteorite fragments collected in the Almahata Sitta strewn field, including various types of ureilite rocks and chondrites (e.g. [1-9]). The petrography and mineralogy of nine new samples were studied here (MS-MU-012 – MS-MU-020), complemented with oxygen isotope compositions obtained for several of the new samples by IR laser fluorination.

Results: MS-MU-012 and -019 are the most outstanding samples. MS-MU-012 is an ubbrecciated, ureilite feldspar-olivine-pyroxene rock. The plagioclase-rich areas do not occur as isolated fragments as observed in (polymict) ureilite breccias, but appear to represent primary rock constituents. These plagioclase-rich areas display very low REE abundances (<0.15 x CI), except for Eu (~2 ppm; Eu/Eu*=250-300). Oxygen isotopes (δ¹⁸O = 2.63‰, δ¹⁶O = 6.98‰; average of 3 measurements) support the relation of the plagioclase-rich aliquot of MS-MU-012 to urelitic rocks. MS-MU-019 is an unusual enstatite- and metal-rich achondrite with two different coexisting enstatite populations (~En₃6Wo₁₃ and ~En₃6,9Wo₂). Based on texture, mineralogy, and O-isotopes it might represent a unique type of meteorite. Preliminary results for MS-MU-019 indicate variable δ¹⁸O (3.5-4.1‰) and δ¹⁶O (6.6-7.5‰) values, which may imply a relationship to E-chondrites or aubrites.

MS-MU-013 has a chondritic texture. Based on the compositions of olivine (~Fa₁₇) and pyroxene (~Fs₁₀) the rock has to be classified as a H5 chondrite, although the O-isotope compositions (δ¹⁸O = 3.38‰, δ¹⁶O = 4.92‰; mean of 2 analyses) are more related to L/LL. Based on the presence of alabandite and the recrystallized texture, MS-MU-015 clearly is an EL6 chondrite (Fa₀₃). MS-MU-014, -016, -017, and -020 are coarse-grained ureilites. The olivine cores in MS-MU-014 have ~Fa₂₀ and the pyroxene has ~Fs₁₇. MS-MU-016 has abundant pyroxene, and the olivine and pyroxene cores have ~Fa₁₂₅ and ~Fs₁₁. MS-MU-017 is also rich in pyroxene. The olivine and low-Ca pyroxene cores have ~Fa₁₃ and ~Fs₁₁, respectively. Frequently observed Ca-pyroxenes have variable compositions (~Fs₃₆,9Wo₂₀, 30). The olivine in MS-MU-020 is strongly zoned with the highest Fa content of ~Fa₃₁; low-Ca pyroxene cores have ~Fs₁₈₅. MS-MU-018 is a heavily-shocked, fine-grained ureilite with abundant opaque phases (metal, sulfides).