CALIBRATING TROILITE COSMOTHERMOMETER IN BRAUNSCHWEIG METEORITE.

M. Szurgot¹, R. A. Wach², R. Bartoschewitz³.
¹Center of Mathematics and Physics, Lodz University of Technology, Al. Politechniki 11, 90 924 Lodz, Poland. E-mail: m.szurgot@p.lodz.pl. ²Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93 590 Lodz, Poland. Email: wach@mitr.p.lodz.pl. Bartoschewitz Meteorite Laboratory, Weiland 37, 38518 Griffhorn, Germany. E-mail: bartoschewitz.meteorite-lab@T-online.de

Introduction: Differential scanning calorimetry is a convenient technique to measure α/β phase transformation in troilite of meteorites. The aim of the paper was to determine the effect of the maximum temperature of controlled, laboratory heating and time of heating on the temperature of α/β phase transformation in Braunschweig troilite.

Methods: Temperature of α/β phase transformation in 10-20 mg crushed samples of the Braunschweig L6 chondrite containing 2.1-7.8 wt% of troilite were measured by a differential scanning calorimeter Q200 (TA Instruments, USA) at heating rate of 20 °C/min under nitrogen. α/β phase transformation in troilite was evaluated after each sequence of heating/cooling without removal of the sample from the DSC instrument. Samples were heated to various maximum temperatures between 170 and 600 °C, maintained over 0.1, 2, 5, or 10 min at each maximum temperature then cooled down, measured and reheated to the subsequent, higher maximum temperature.

Results: Maximum temperature of heat treatment and period of heat treatment at maximum temperature affect temperature of α/β phase transformation in troilite. The temperature of α/β transition (offset and peak T_peak temperature) shows gradual decline with the increase in the maximum temperature of preceding heat treatment. The peaks become broader and the heat enthalpy of the transition decreases with increasing heat treatment temperature, which is in accordance with the previous reports for L chondrites [1-5]. Temperature of α/β phase transformation in Braunschweig troilite varies inversely with the maximum temperature of the heat treatment. For example: starting with T_peak = 149.7 °C for the virgin, untreated sample 1, after its subsequent isothermal annealing for 0.1 min it was obtained in subsequent runs: 149.0 °C (annealing at 170 °C), 148.6 °C (at 200 °C), 146.6 °C (at 250 °C), 146.3 °C (at 300 °C), 145.6 °C (at 400 °C), 145.0 °C (at 500 °C), and 145.1 °C (at 600 °C). Sample 2 annealed for 10 min in each run revealed: untreated sample peak position T_peak = 149.4 °C, 148.1 °C (at 170 °C), 146.7 °C (at 200 °C), 145.8 °C (at 250 °C), 143.9 °C (at 300 °C), 141.1 °C (at 400 °C), 139.0 °C (at 500 °C), and 139.0 °C (at 600 °C).

Conclusions: Annealing temperature and time are crucial parameters in troilite thermometry. Relict temperatures between 160 and 600 °C can be determined by troilite thermometry. Braunschweig’s interior reveals relict temperature about 435 K.