OLIVINE ANNEALING IN MOLTEN IRON-SULFIDE. A TOOL TO INTERPRET THE ORIGIN OF PALLASITES.
G. F. D. Solferino1,2, S. L. Muir1 Earth Science Department, Mount Royal University, Calgary (AB, Canada). 2Institute of Mineralogy and Petrology, ETH Zurich (Switzerland)
E-mail: gsolferino@mtroyal.ca

Pallasite meteorites are mixtures of olivine and Fe-Ni-(S) alloy in various proportions. The texture of this type of meteorites present a form of dualism, with rounded grains or angular fragments of olivine (e.g., Brenham and Eagle Station, respectively) surrounded by an Fe-Ni matrix, which bears various amounts of sulphur. Pallasites with uniquely or prevalently rounded olivine are thought to have formed inside a terrestrial planetesimal, which had not experienced complete separation of a silicate mantle and a metal core (e.g., [1], [2]) or after prolonged annealing in a body generated by the injection of the core of an impactor into the mantle of a proto-planet [3], after a catastrophic collision between planetesimals.

Several studies, aimed at determine the thermal history of pallasites, are based on annealing of olivine into Fe-Ni matrix (e.g., [1], [4]), or investigation of metal textures in actual meteorites (e.g., [2]). The authors of [1] express a need for investigation of olivine growth in sulphur-bearing metal alloy. In [4] a grain growth law for olivine was computed. However, employing the grain growth rate obtained in [4], the time required to achieve olivine grain size found in actual pallasites (up to 15-20 mm) would be enormous (i.e., > 1 Ga), which is implausible since maximum life span of the original pallasite body must have been less than 10-20 Ma (e.g., [3]).

The current study encompasses a series of annealing experiments of olivine plus Fe-S at 1100-1430 °C and 1 GPa (at which conditions iron-sulfide is molten) performed in a piston cylinder press. Digital analyses of BSE images of the run products was employed to determine the growth mechanism and growth rate of olivine, and finally to calculate a grain growth law for olivine in molten Fe-S. The most relevant finding is an olivine growth rate orders of magnitude larger than those of olivine in solid Ni [3], which allows reaching of a grain size of 20 mm within ~5 ka to 1 Ma for annealing temperatures of 1400 and 1000 °C, respectively.