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Introduction:  Knowledge of densities, iron to sili-

con ratios, and mean atomic weights is important to 

characterize minerals and rocks, planets, moons, and 

asteroids. The aim of the paper was to apply relation-

ship between density and Fe/Si ratio for extraterrestrial 

materials to verify Moon’s uncompressed density, and 

Fe/Si atomic ratio. Literature data on chemical compo-

sition and density of the Moon [1-16] have been used 

to verify and apply d(Fe/Si) relationship, recently es-

tablished for planetary materials, chondrules, 

chondrites, chondrules, planets, and asteroids by 

Szurgot [17].  

Results and discussion:  Recently relationships be-

tween mean atomic weight Amean and density d of 

meteorites, planets, moon, and asteroids have been 

established [18-21].  They are expressed by the equa-

tions: 

Amean = (7.51 ± 0.13)∙d - (2.74 ± 0.55),                  (1) 

d = (0.133 ± 0.002)∙Amean + (0.37 ± 0.07),             (2) 

where d(g/cm
3
) is a planetary uncompressed density, or 

grain density of meteorites [18-21]. Using eq. (2) we 

can predict d, if Amean is known. Values of RMSE: 

0.54 for eq. (1), and 0.07 for eq. (2).   

   Another important relationship is between Amean 

and Fe/Si atomic ratio, valid also for chondrules: 

Amean = (5.72 ± 0.13)∙Fe/Si + (20.25± 0.54),          (3)                      

for which RMSE = 0.12 [18-21]. Equations (2) and (3) 

suggest that there exists a relationship between density 

d and Fe/Si atomic ratio.      

    The d(Fe/Si) relationship for extraterrestrial matter 

has been discovered by the author, and verified for 

Mars, Venus, Earth, Moon, and OC chondrites [17]. 

The d(Fe/Si) dependence is presented in Fig. 1, and is 

expressed by the equation [17]: 

d = (0.765 ± 0.046)∙Fe/Si + (3.11 ± 0.03).              (4)  

 

 
Fig. 1 Relationship between d and Fe/Si atomic ratio (eq. 

(4)). It is seen that Earth’s data: d = 3.955 g/cm3 [10,12], and 

Fe/Si = 1.104 [14]), and Moon’s data: d = 3.27 g/cm3 

[10,12], and Fe/Si = 0.205 [1] verify  d(Fe/Si) relationship. 

   Author’s data reveal that d(Fe/Si) relationship is val-

id not only for rocky planets, asteroids, moons, OC, 

and EC chondrites, but also for ferromagnesian 

chondrules. 

    Figure 1 shows that Moon’s and Earth’s Fe/Si atom-

ic ratios, and uncompressed densities much perfectly 

the relationship. For example, literature data indicate 

uncompressed density d = 3.27 g/cm
3
 for the Moon 

[10,12], and substituting Fe/Si values: 0.205 [1], and 

0.213 [6] into eq. (4) predicts the same value d = 3.27 

± 0.04 g/cm
3 
for uncompressed density of Moon.  

 

Table 1. Moon’s Fe/Si atomic ratio, uncompressed density 

predicted by d(Fe/Si) dependence (eq. (4)), and atomic 

weight Amean for various Moon’s models.  

Moon Fe/Si d(Fe/Si) 

(g/cm3) 

Amean 

TWM* 0.205 [1] 3.27  21.52 

BM 1# 0.296 [2] 3.34 22.44 

BM 2 0.063 [3] 3.16 20.96 

BM 3a 0.074 [3] 3.17 21.09 

BM 3b 0.135 [3] 3.21 21.37 

BM 4 0.301 [4,15] 3.34 22.09 

Interior 0        [5]  3.11 21.61 

Interior 0.213 [6] 3.27 21.73 

Mantle 0.186 [7] 3.25 21.31 

Mantle+Crust 0.181 [7] 3.25 21.29 

LPUM## 0.138 [8] 3.22 21.14 

U. Mantle 0.157 [9] 3.23 21.80 

L. Mantle 0.307 [9] 3.34 22.32 

Mantle+Crust 0.193 [16] 3.26 21.75 

Crust 0.119 [7] 3.20 20.93 

 H. Crust 0.082 [10] 3.17 21.57 

Range 0 - 0.30 3.1 - 3.34 21 - 22.4 

*TWM = Taylor Whole Moon, #BM = Bulk Moon, LPUM## 

= Lunar Primitive Upper Mantle, U = upper,  L. Mantle = 

Lower Mantle, H. Crust =  Highland Crust. 

  

     For Fe/Si ratio established for the upper mantle 

(0.138) eq. (4) predicts 3.22 g/cm
3
, the same value 

which was recently given for the lunar mantle [11].  

     Predicted density for lunar crust (3.17 g/cm
3
) is, 

however too high. Lower bound (3.11 g/cm
3
) indicated 

for density by eq. (4) is too high for crustal materials, 

and recent GRAIL data reveal crustal density as low as 
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2.55 g/cm
3
 [11], that is even lower than the previous 

estimations for the lunar crust 2.8 - 2.9 g/cm
3
. 

    Various Moon’s models lead to the range of uncom-

pressed values: 3.11 – 3.34 g/cm
3
 for Moon (Table 1). 

This means that d(Fe/Si) relationship (eq. (4)) holds 

well for the Moon. Equation (4) and Table 1 data indi-

cate that relative error in d determination is of the order 

of 1 - 2%. 

     There exists the inter-dependence between density 

and Fe/Si ratio expressed by Fe/Si(d) relation. It is 

described by the equation: 

Fe/Si = (d - 3.11)/0.765,                                           (5) 

for which expected error is Δ(Fe/Si) ≈ 0.02 for Earth’s 

Fe/Si ratio: 1.10, and 0.004 for Moon’s Fe/Si ratio: 

0.20. Using eq. (5) we can predict Fe/Si atomic ratio, if 

d is known. Equation (5) predicts Fe/Si = 0.209 ± 

0.004 for the Moon’s uncompressed density d = 3.27 

g/cm
3
 (Table 2). Relative error is of order of 2%. 

    Table 2. Uncompressed density of Moon, and Fe/Si atom-

ic ratios predicted by Fe/Si(d) dependence (eq. (5)).  

d(g/cm3) 

/[reference] 

(Fe/Si)(d) 

 

Fe/Si 

/[reference] 

3.27  [10] 0.209 ±0.004 0.205  [1] 

3.27  [10]  0.209 ± 0.004 0.213  [6] 

       Various Moon’s models lead to various values of 

elemental abundance of the Moon, and as a result they 

predict various values of Fe/Si ratio, various values of 

mean atomic weight, and various values of uncom-

pressed density of the Moon. Moon‘s Fe/Si ratio is in 

the range of 0–0.30, predicted density d is in the range: 

3.11 - 3.34, and Moon’s range of Amean is: 21.0 – 22.4 

[18] (Table 1). 

     Data presented in Tables 1 and 2 show that eq. (4)  

for Fe/Si = 0.209 ± 0.004 gives the best value for un-

compressed density of Moon: d = 3.27 ± 0.04 g/cm
3
. 

For this value of Fe/Si ratio we get Amean(Fe/Si) =  

21.4 ± 0.1, i.e. 2% lower value Amean than that result-

ed from the Moon’s bulk composition.    

   Table 3. Moon’s mean atomic weight Amean,  uncom-

pressed density d (g/cm3) resulted from d(Amean) depend-

ence (eq. (2)), and Fe/Si ratio predicted by Fe/Si(d) depend-

ence (eq. (5)). 

 Amean [18] d(Amean) Fe/Si(d) 

Moon 21.8 ± 0.4   3.27 ±0.04 0.21 ± 0.05 

Mantle 

+Crust 

21.5 ± 0.4   3.23 ±0.05   0.16 ± 006 

Core 50.3 ± 3.7   7.06 ±0.49*   5.2 ± 0.5# 

*d(Amean) range: 6.57-7.55 (g/cm3), #Fe/Si(d) range:4.7-5.7.  

For Fe/Si = 5.7 eq. (1) gives  d = 7.47 g/cm3, and for    

Amean = 54 eq. (2)  gives d = 7.55 g/cm3 for the lunar core. 

      Author’s recent data indicate that the whole Moon 

bulk composition leads to Amean = 21.8 ± 0.4 [18]. 

Lunar core Amean = 50.3 ± 3.7, mantle Amean = 21.9 

± 0.4, crust Amean = 21.7 ± 0.4, and bulk silicates of 

mantle and crust Amean = 21.5 ± 0.4 [18].   

Table 4. Lunar mean atomic weight Amean, Fe/Si atomic 

ratio, and uncompressed density d.  

Amean Fe/Si d(Fe/Si) d(g/cm3) 

21.8±0.4     0.21±0.05    3.27± 0.04 3.27  [10,12] 

      Table 3 presents data on predicted values of un-

compressed density of Moon’s bulk silicates and 

Moon’s core by d(Amean) (eq. (2)) dependence. Is is 

seen that uncompressed density of Moon’s silicates is 

3.23 g/cm
3
, and lunar core: 7.06 g/cm

3
, and 7.55 g/cm3, 

for mean density, and upper limit of density, respec-

tively. Data collected in Table 4 show values of 

Moon’s mean atomic weight Amean, Fe/Si ratio, and 

uncompressed density d, verified in this paper.   

     Conclusions: Dependence between density and 

Fe/Si atomic ratio d(Fe/Si) predicts precisely uncom-

pressed density of the Earth, and the Moon, and leads 

to reliable values for uncompressed density of lunar 

mantle+crust, and lunar core. Fe/Si  ratios are predicted 

by Fe/Si(density) relation. Moon’s mean atomic 

weight, uncompressed density, and Fe/Si atomic ratio 

have been verified. 
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