The table below provides an overview on derived rotational parameters. Thereby the orientation of the rotation axis is parameterized by the declination $\delta(t) = \delta_0 + \delta_1 t/\text{cy}$ and right ascension $\alpha(t) = \alpha_0 + \alpha_1 t/\text{cy}$. The temporal evolution of the right ascension and declination angles is described by a linear function, where the first term gives the orientation of the rotation axis at the J2000 epoch (with respect to ICRF) and the second term denotes the long-term precession of the rotation axis (‘cy’ refers to Julian century, i.e. 365.25 days). The rotation about that axis is defined by the prime meridian angle $W(t) = W_0 + W_1 t/d + W_2 n(t)$, which is composed of the prime meridian constant W_0, the mean rotation rate W_1 and the forced libration in longitude $W_2 n(t)$. The amplitude of the latter is denoted by $A_{\text{lib}} = \max W_2 n(t)$. Values in rows below the dashed line are based on MESSENGER observations. Rotational parameters adopted for MESSENGER cartographic products are highlighted in bold face. Computed values refer to the orientation and precession of the orbit plane normal and to the rotation rate obtained by the assumption of a 3:2 spin-orbit resonance.

References & Acknowledgments

This work was funded by a grant from the German Research Foundation (OB124/11-1). A. Stark was supported by a research grant from the Helmholtz Association and DLR. This poster is based on a manuscript submitted to Journal of Geodesy (preprint available at https://arxiv.org/abs/1710.09686).

References and Acknowledgments: This work was funded by a grant from the German Research Foundation (OB124/11-1). A. Stark was supported by a research grant from the Helmholtz Association and DLR. This poster is based on a manuscript submitted to Journal of Geodesy (preprint available at https://arxiv.org/abs/1710.09686).