

Last Transmission: December 15, 2022, 03:07 PST (Sol 1440, 15:05:30 LMST)

• Estimated DBR entry: December 16, 2022 (Sol 1442, ~01:00 LMST)

Declared End of Mission: December 20, 2022

• Time on Mars: 4 years, 19 days

Prime Mission: 720 sols

Extended Mission: 680 sols

DBR = Dead Bus Recovery Mode

Scientific Results

Mars Structure Compared to Earth and Moon

InSight Level-1 Science Requirements

Req. #	Title	L1 Requirement	Instrument
Threshold			
L1-SCI-41	Crust Thickness	Determine the depth of the crust-mantle boundary to ± 10 km.	SEIS
L1-SCI-42	Crust Layering	Detect velocity contrast ≥0.5 km/sec over depth interval ≥5 km within the crust, if it exists.	SEIS
L1-SCI-43	Mantle Structure	Determine seismic velocities in the upper 600 km of the mantle to within ± 0.25 km/sec.	SEIS
L1-SCI-45	Core State	Distinguish between liquid and solid core to 90% confidence.	SEIS + RISE
L1-SCI-46	Core Radius	Determine the radius of core to within ± 200 km.	SEIS + RISE
L1-SCI-47	Core Density	Determine the average core density to within $\pm 450 \text{ kg/m}^3$.	SEIS + RISE
Baseline			
L1-SCI-49	Heat Flux	Determine the heat flux at landing site to within ± 5 mW/m ² .	HP ³
L1-SCI-50	Seismic Activity	Determine the rate of seismic activity to within a factor of 2.	SEIS
L1-SCI-51	Event Locations	Determine epicenter distance to ± 25 % and azimuth to $\pm 20^{\circ}$.	SEIS
L1-SCI-52√	Impact Rate	Determine the rate of meteorite impacts to within a factor of 2.	SEIS

1319 Marsquakes

Mars Structure Compared to Earth and Moon – After In Sight

Mapping the internal structure of Mars, its crust, mantle and core

Additional significant results in geology, meteorology, magnetics, spin dynamics

- First seismometer on the surface of Mars
- First detection of a marsquake
- First seismic measurement of the impact event for an identified crater
- Lowest seismic noise level ever measured on any planet
- First infrasound measurements on Mars
- First measurement of the nutation of a planet other than the Earth
- First magnetic measurements at the surface of Mars
- The most comprehensive and highest resolution weather data ever obtained on Mars
- The detection and characterization of more than 20,000 vortices (dust devils)
- First laser retroreflector at the surface of Mars
- First robotic deployment of an instrument to the surface of another planet
- First programming of a Frank Zappa wake-up song on a planet other than the Earth

- The InSight Science Team has published over 225 peer-review papers thus far.
 - InSight papers have been featured in a number of high-impact journals, including Science, Nature, Journal of Geophysical Research, and Proceedings of the National Academy of Sciences.
- The paper by Stähler et al., "Seismic detection of the Martian core", has been awarded the AAAS Newcomb Cleveland Prize for outstanding paper of 2022 in the journal Science.
- There are more than 50 additional team papers that are submitted or in active preparation, including a *Geophysical Research Letters* special collection focused on the large S1222a event.
- Dozens of papers from outside the team have been published using InSight data, and more are coming out every month.

- Throughout the mission, InSight has consistently released it's data on schedule, within 6 months of acquisition.
- There is one remaining scheduled PDS data release on Mar. 31, which will contain the final batch of science data acquired from Oct. 1 – Dec. 15, 2022.
- A final reprocessed archive data set will be released on Jun. 31
- In addition to the instrument data, the InSight project provides higherlevel, derived data products to PDS. These include reference interior models and marsquake catalogs.
- The process for generating these products is iterative, and includes peer-review and publication.
- This process is expected to take up to an additional year.

27 February, 2023 MEPAG Virtual Meeting 16

What Happened?

Dust on the Solar Arrays

Battery Voltage

By late last year our 4-Sol operational routine was:

Sol 1: Run SEIS 8 hr. Sol 2: Transmit data. Sol 3: Sleep/recharge. Sol 4: Sleep/recharge. This allowed us to continue to obtain seismic data, but was slowly depleting the batteries.

- InSight is a cost-capped Discovery Program mission.
- It was designed to accomplish ten specific scientific objectives (Level-1 Requirements).
- During development (i.e., proposal writing) the science team concluded that these objective could be met with one Mars year (~2 Earth years) of surface operations.
- Thus, we implemented a power system (based on the Phoenix system) that was affordable and would support operations for a Mars year (with margin).
- But not much more.
- Mission lifetime was pretty predictable:
 - We knew solar array efficiency, insolation as a function of orbital position, probabilistic tau as a function of season.
 - We also knew the rate of dust accumulation on Mars (Pathfinder, Spirit, Opportunity).
- There were no surprises on Mars with any of these.

- Officially, yes. In our hearts, no.
- Both Spirit and Opportunity experienced multiple "cleaning events", presumably from vortices. We had some expectation that this would happen for InSight as well.
- Why didn't it?
- We believe that they are associated with wind events, and in particular atmospheric vortices (e.g., dust devils).
- There are many vortices at the InSight location, similar in number to Gusev Crater.
 - -PS and SEIS detected more than 20,000 of them nearby over the course of the mission; none were seen in images.
- However, tracks as seen from orbit are much narrower and straighter than those near Spirit.
- Comparing the rate of area swept out by tracks, we should expect the rate of direct hits on the lander to be ~10X less frequent than in Gusev (which was ~1/200 sols).
- This implies a mean time between cleanings of ~7 years.

What's Next?

30V: Nominal Mode

- ~26V: Knee in the Battery Discharge Curve
 - Voltage will drop faster based on battery performance

22V: DBR Trigger (H/W trigger)

- Dead Bus Recovery Mode entered
 - C&DH powered off (CMIC SCET and mission phase knowledge lost)
 - All latching switches opened
 - PDDU/CPS-HE powered off

20.5V: PDDU/HEPS powered off (H/W trigger)

DBR charge circuitry remains active

Recovery possible if battery cells have not reversed polarity (possible <16V) or DBR circuit fails (<12V)

↑30V: Nominal Mode, FTS (Fixed Time Step)

28-30V: Ground initiated recovery after communication is established

28V: CPS-HE Inhibit Released (H/W trigger)

- Exit Dead Bus Recovery mode
- C&DH & FSW boot into FTS Safe Mode
 - Mission phase resolved through backshell sep. indicator state
 - Lost-in-time configuration asserted
 - Payload/heaters powered off (Side A) or on (Side B)
 - Communication attempted on a regular pattern (2 Hr every 17 Hr)

21.5V: PDDU/HEPS powered on (H/W trigger)

27 February, 2023 MEPAG Virtual Meeting 16

Battery Recharge

InSight Listening Campaign

- We have set up a program to listen for InSight's recovery within the existing Mars Network services.
 - X-band open loop recording during comm passes with other Mars assets (~daily)
 - UHF overflight passes on a non-interference basis (several times/week)
- Paid for with left-over InSight FY22 funds
- Responsibility handed over to Mars Exploration Program at InSight's End of Project, June 30, 2023.
- This phase is scheduled to last through the end of FY25

