Lunar Surface Science Workshop

April 28-30, 2020

Denver, Colorado

 

Program and Abstracts

 

Tuesday, April 28, 2020

8:30 a.m.

Alder

Overview

1:30 p.m.

Boxelder

Tools and Instruments for Surface Science

1:30 p.m.

Aspen

Foundational Data Products

1:30 p.m.

Cherry

Dust and Regolith

1:30 p.m.

Douglas Fir

Human Health and Performance

 

Wednesday, April 29, 2020

8:30 a.m.

Boxelder

Geophysics

8:30 a.m.

Aspen

Volatiles I

8:30 a.m.

Cherry

Composition

8:30 a.m.

Douglas Fir

Earth Science

10:05 a.m.

Douglas Fir

Astrophysics

11:10 a.m.

Aspen

Volatiles II

1:30 p.m.

Boxelder

Lunar Surface Operations

1:30 p.m.

Aspen

Cartography

1:30 p.m.

Cherry

Samples

1:30 p.m.

Douglas Fir

Space Weather and Heliophysics Science

3:50 p.m.

Aspen

ISRU

3:50 p.m.

Douglas Fir

Space Biology

 

Thursday, April 30, 2020

8:30 a.m.

Alder

Where to Explore

10:30 a.m.

Alder

Value of Mobility

1:30 p.m.

Alder

Infrastructure That Enables Scientific Exploration

2:30 p.m.

Alder

Community Engagement

3:45 p.m.

Alder

Artemis Phase 2 Discussions

4:45 p.m.

Alder

Closing Remarks

 

Tuesday, April 28, 2020

OVERVIEW

8:30 a.m.   Alder

Chairs:  Ben Bussey and Brad Bailey

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

8:30 a.m.

Bussey B. *

Welcome and Opening Remarks

8:40 a.m.

Clarke S. *

SMD Overview

9:00 a.m.

Smith M. *

Artemis Overview

9:15 a.m.

Chavers G. *

Human Landing System Overview

9:30 a.m.

Werkheiser N. *

STMD Overview

9:50 a.m.

Aitchison L. *

Expected Exploration Capabilities for the Early Artemis Missions

10:05 a.m.

 

BREAK

10:15 a.m.

Carpenter J. *

ESA Overview

10:30 a.m.

Fujimoto M. *

JAXA Overview

10:45 a.m.

Morisset C. E. *

CSA Overview

11:00 a.m.

Lawrence S. *

The Value of a Foothold on the Moon

11:15 a.m.

Fagan A. L. *   Cohen B. A.   Denevi B. W.   Lawrence S. J.   Neal C. R.

Lost on the Way to the Moon? Try the Lunar Exploration Roadmap [#5076]
We present the Lunar Exploration Roadmap, with its Science, Feed-Forward, and Sustainability themes, that illustrates a prioritized and time-phased set of goals to enable exploration of the Moon and the rest of the solar system.

11:30 a.m.

Neal C. R. *

Addressing Lunar Science Questions at the Lunar South Pole [#5089]
The south pole region of the Moon allows a number of fundamental lunar (and solar system) science to be addressed.

11:45 a.m.

Lazio J. *

Astrophysics and the Moon

12:00 p.m.

Spence H. *

Space Weather

12:15 p.m.

 

DISCUSSION

12:30 p.m.

 

LUNCH

 

Tuesday, April 28, 2020

TOOLS AND INSTRUMENTS FOR SURFACE SCIENCE

1:30 p.m.   Boxelder

Chairs:  Casey Honniball and Kris Zacny

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

 

European Astronaut Centre Invited Talk

1:45 p.m.

Naids A. J. *   Bergman H. R.   Hood A. D.   Walker M. L.   Graff T. G.   Mitchell J. L.   Young K. E.   George T.

Developing Initial Geology Sampling Tools for the Artemis Program [#5006]
The Extravehicular Activity (EVA) Tools Team at the Johnson Space Center (JSC) has started developing an initial set of next-generation lunar geology sampling tools for the Artemis Program.

1:55 p.m.

Zacny K. *   Paulsen G.   Indyk S.   Chu P.   Mank Z.

Astronaut Deployable Sampling, Drilling, and Geotechnical Tools [#5086]
Here we describe several options for collecting samples on the Moon.

2:05 p.m.

Rehmatullah F. *   Shariff J. A.   Osinski G. R.

Moon Caddy:  A Lunar Geologist’s Robotic Assistant [#5043]
This paper presents a mission architecture combining a human explorer with a roving robotic assistant. An astronaut geologist can make informed decisions about the target while an accompanying rover provides a suite of scientific instruments.

2:15 p.m.

Hurtado J. M. Jr. *

Modern Imaging Technologies to Support Geologic Field Work and EVA Operations on the Lunar Surface [#5130]
Lunar EVA activities can be documented at multiple scales and from multiple perspectives by collecting imagery to temporally reconstruct EVA events and to spatially reconstruct the study site in 3D, in so doing capturing vital context data.

2:25 p.m.

Evans M. E. *   Graham L. D.   Feist B. F.   Garry W. B.

The Artemis “Gandalf’s Staff” Science Suite for Crew EVA Lunar Field Geology [#5031]
Gandalf’s Staff enhances EVA science for Artemis surface missions by providing illumination and precise documentation of geologic sample location, orientation, and collection conditions, then rendering a full 3D traverse model for playback analysis.

2:35 p.m.

 

DISCUSSION

2:55 p.m.

Young K. E. *   Bleacher J. E.   Graff T. G.   Glotch T. D.   Rogers A. D.   McAdam A.   Whelley P. L.   Richardson J.   Achilles C.   Knudson C.   Garry W. B.   Feist B.   Scheidt S. P.   Honniball C.   Morse Z.   Naids A.   Coan D.   Rampe E. B.   Evans C.   Bell E.   Schmerr N.

The Importance of Incorporating Field Portable Instrumentation in Lunar Surface Exploration — and the Implications of Doing So [#5143]
Field portable instruments have the potential to provide valuable science data real-time during lunar exploration. We consider the hardware, software, and operational concepts of incorporating field portable instruments in crewed lunar exploration.

3:05 p.m.

Clark P. E. *   Staehle R.   Bugby D.   Fraeman A.   Green R. O.   Sellar R. G.   Madzunkov S.   Maiwald F.   Yu N.   Tang A.   Cochrane C.   Hardgrove C.   Collier M.   Angelopoulos V.

Handheld, Surface-Deployed, or Rover-Mounted Astronaut Instruments [#5050]
We are developing a diverse set of compact instruments, and high performance generic yet reconfigurable packaging suitable for these instruments, utilizable by astronauts as handheld, crew-deployed or rover-mounted devices on the lunar surface.

3:15 p.m.

Zanetti M. *   Robinson B.   Anzalone E.   De Leon Santiago B.   Hayward E.   Steiner B.   Anderton B.   Cordova T.   Jetton J.   Langford D.   Reeves J.   Walters J.

The Kinematic Navigation and Cartography Knapsack (KNaCK) LiDAR System [#5110]
The lunar SP is a challenging GPS-denied environment with difficult solar illumination conditions. We describe the development and testing of our velocity-sensing LiDAR instrument for terrain mapping and navigation to enable science and exploration.

3:25 p.m.

Cannon K. M. *   Mueller R. P.   Deutsch A. N.   Van Susante P.   Tarnas J. D.   Colaprete A. C.   Sowers G.   Dreyer C. B.   Li S.   Sercel J.   Dove A. R.   Britt D. T.

The Snow Badger Mission Concept:  Trenching for Ice with Humans and Robots [#5108]
Snow Badger is a proposed investigation where Artemis astronauts work together with autonomous RASSOR excavation robots to dig trenches near the Artemis landing site to study water ice and other volatiles.

3:35 p.m.

 

DISCUSSION

3:55 p.m.

Honniball C. I. *   Young K. E.   Rogers A. D.   Lucey P. G.   Piquero D.   Wolfe B.   Glotch T. D.

Rover-Based Reconnaissance with an Infrared Spectral Mapper and Real-Time Data Processing [#5079]
Spectral imaging on the surface of planetary bodies allows for faster definition of units in a quantitative manor in terms of relevant compositions. A rover-based imager can provide maps prior to EVA to inform sample triage and traverse execution.

4:05 p.m.

Kring D. A. *   Heggy E.

Conducting Subsurface Surveys with a Crew Rover to Address Both Scientific and ISRU Objectives [#5038]
Standard integration of GPR and NSS on crew rovers will provide the capability to survey the subsurface during transects across the lunar surface.

4:15 p.m.

Raimalwala K. R.   Faragalli M.   Reid J. E. *   Smal E. P.   Battler M. M.

Autonomous Soil Assessment System:  Contextualizing Rocks, Anomalies, and Terrains in Exploratory Robotic Science (ASAS-CRATERS) [#5124]
ASAS-CRATERS is a multi-mission technology that enables automated geologic scene characterization on planetary rover missions. It uses a deep-learning based terrain classifier and novelty detector, and aggregates data to support science operations.

4:25 p.m.

Eubanks T. M. *   Radley C. F.   Blase W. P.

Using Long Wave Radio and the Lunar Plasma Environment for Lunar Exploration [#5167]
Here we describe how important communication and science problems can be addressed at the Moon through the use of low frequency radio at frequencies from 1 Hz to 100 MHz.

4:35 p.m.

Chin G. *   Silk E.   McClanahan T.

Stirling Power Generation for Lunar Day/Night Use [#5041]
We plan to design an advanced power generator system that takes advantage of the temperature differences between the Moon’s surface and the thermal reservoir of the regolith below 10 cm to power an efficient cryogenic Stirling electric generator.

4:45 p.m.

 

DISCUSSION

 

Tuesday, April 28, 2020

FOUNDATIONAL DATA PRODUCTS

1:30 p.m.   Aspen

Chairs:  Emerson Speyerer and Noah Petro

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Petro N. E. *   LRO Project Science Team

The Next Decade of Lunar Reconnaissance Orbiter Observations of the Moon:  Science and Exploration in Support of Artemis [#5078]
LRO data will be critical for identifying Artemis landing sites, and perhaps making concurrent observations from orbit. We will discuss LRO data that can be used to support Artemis as well as the future of the mission.

1:40 p.m.

Ohtake M. *

JAXA’s Lunar Polar Explorer Mission

1:55 p.m.

Estes N. M. *   Robinson M. S.

LROC:  Ten Years Exploring the Moon [#5118]
LROC has been gathering data for ten years that can be invaluable to future exploration of the Moon including DTMs, controlled mosaics, photometric series, global maps, and more.

2:05 p.m.

Magana L. O. *   Retherford K. D.   Byron B. D.   Czajka E. A.   Raut U.   Hendrix A. R.   Mandt K. E.   Cahill J. T. S.   Hurley D. M.   Hayne P. O.   Greathouse T. K.   Gladstone G. R.

Lunar Surface Ice Identifications by LRO Lyman Alpha Mapping Project (LAMP) Far-Ultraviolet Spectroscopy [#5162]
Science provided by LRO-LAMP investigations allows for the study of how water is formed on the Moon, transported through the lunar exosphere, and deposited in PSRs, and are therefore a useful tool in planning for upcoming Artemis crewed missions.

2:15 p.m.

Manheim M. R. *   Henriksen M. R.   Wagner R. V.   Robinson M. S.

Supporting Lunar Landers with LROC NAC Products [#5155]
LROC NAC observations and derived products are essential data sources for planning and supporting landed lunar missions. We describe these data products and summarize LROC support provided for ongoing and proposed missions.

2:25 p.m.

Speyerer E. J. *   Robinson M. S.   Boyd A.   Wagner R. V.   Henriksen M. R.

Exploration of the Lunar South Pole with LROC Data Products [#5132]
LROC has observed the polar regions for over a decade. These observations enable high resolution maps and illumination models that can be used to plan future surface missions. In addition, obliques offer new perspectives and context of these regions.

2:35 p.m.

Henriksen M. R. *   Manheim M. R.   Robinson M. S.

LROC NAC Digital Terrain Models:  Production and Availability [#5084]
High-resolution and accurate LROC NAC topographic data is essential for planning safe lunar landings and surface activities. We describe the methodology for producing and evaluating NAC DTMs, as well as the tools for finding NAC topographic data.

2:45 p.m.

Bailey A. M. *   Martin A. C.   Grey P. E.   Henriksen M. R.   Robinson M. S.

LROC NAC Feature Mosaics:  A Powerful Tool for Lunar Landing Missions [#5142]
The use of LROC NAC Feature Mosaics(FMs) for landing site analysis and mission planning. Summarizes FM production and availability, their scientific and engineering applications, and ways users can access these products.

2:55 p.m.

Mazarico E. *   Barker M. K.   Neumann G. A.   Smith D. E.   Zuber M. T.   Sun X.   Yang G.   Chen J.   Harding D.   Cremons D. R.   Head J. W.   Lucey P. G.

Regional Lidar Topography and Reflectance Enable the Scientific Exploration of the Lunar South Pole:  Status and Perspectives [#5019]
We present the current knowledge of topography and normal albedo in the south pole region from the LOLA instrument. We discuss technological developments that will allow meter-level resolution for these same datasets to support and enhance Artemis.

3:05 p.m.

 

DISCUSSION

3:20 p.m.

 

BREAK

3:30 p.m.

Ferrari-Wong C. M. *   Lucey P. G.   Wright R.   Honniball C. I.   Hayne P. O.   Greenhagen B. T.   Glotch T.   Cahill J.   Hibbitts C. A.

One-Meter Resolution Thermal Infrared Hyperspectral Imaging of Polar Landing Sites [#5093]
We study the feasibility of 1-m resolution thermal infrared hyperspectral imaging of polar landing sites. It is feasible.

3:40 p.m.

Moriarty D. P. III *   Watkins R. N.   Petro N. E.

Mineralogical Diversity of the Lunar South Pole:  Critical Context for Artemis Sample Return Goals and Interpretation [#5152]
The first crewed Artemis mission will return >20 kg of samples from the lunar south pole. To identify the most desirable samples and provide context to maximize science return, it is essential to characterize the geology and mineralogy of the region.

3:50 p.m.

Sayyad S. B. *   Mohammed Zeeshan R.

Mineralogical Mapping Using Chandrayaan-1 Hyperspectral (HySI) Data from the South Pole Region [#5039]
The space weathering effect acts as barrier for accurately assessing the surface mineralogy and compositional analysis. It can be addressed by radiative transfer model that best explains the space weathering effect on remotely sensed spectra.

4:00 p.m.

Blalock J. J. *   Mayer D. P.   Lemelin M.   Sun L.   Lucey P. G.   Gaddis L. R.   Hare T. M.

Lunar South Pole Mineral Map Products from Kaguya Multiband Imager [#5112]
We describe the development of south polar lunar mineral map products derived from images captured by the Kaguya Multiband Imager (MI).

4:15 p.m.

Greenhagen B. T. *   Cahill J. T. S.   Kenyon M.   Mariani G.   Hayne P. O.   Lucey P. G.   Williams J. P.   Paige D. A.

Characterization of Lunar Surface Thermal Environment and Physical Properties Using Advanced Thermopile Arrays [#5097]
Thermal images and panoramas can be used to characterize the thermal environment and surface physical properties, and to assess traverses in terms of scientific interest and potential hazards.

4:25 p.m.

Schoeman T. S. *   Galimanis H. G.   Aradhya A. J.

Next Generation Sensing Technology on the Moon [#5165]
This mission aims to deploy spacecraft on the lunar surface to conduct science, and improve student engagement, as well as contribute to planetary and space sciences, which is directly aligned with what Artemis aims to accomplish.

4:35 p.m.

Patterson G. W. *   Jozwiak L. M.   Leeburn J. M.   Stickle A. M.   Cahill J. T. S.   Prem P.   Mini-RF Team

The Surface Roughness and Volatile Content of the Moon:  A Radar Perspective [#5158]
We review the results of Mini-RF data and their relevance for identifying potential landing hazards, impediments to trafficability, and/or volatile content.

4:45 p.m.

Williams J.-P. *   Greenhagen B. T.   Paige D. A.   Schorghofer N.   Sefton-Nash E.   Hayne P. O.   Lucey P. G.   Siegler M. A.   Aye K.-M.

Mapping Seasonal and Diurnal Temperatures in the Polar Regions with LRO Diviner [#5105]
Polar temperature maps show how the thermal environment can vary in complex ways with time of day and season due to local topography.

4:55 p.m.

 

DISCUSSION

 

Tuesday, April 28, 2020

DUST AND REGOLITH

1:30 p.m.   Cherry

Chairs:  Brett Denevi and Bill Farrell

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Denevi B. W. *   Robinson M. S.

Key Science Investigations of the Moon’s Polar Regolith — A Nonvolatile Perspective [#5122]
Sampling polar regolith provides an opportunity to test theories of space weathering, ballistic sedimentation, and regolith generation and evolution. A landing site on the Shackleton–de Gerlache ridge additionally enables sampling a Tycho Crater ray.

1:45 p.m.

Kendall J. D. *   Petro N. E.

Scratching at the Surface:  Determining Regolith Formation and Provenance at Probable Artemis Landing Sites Using Ejecta Modeling [#5121]
Using impact and ejecta modeling, we reconstruct the sequence of craters at the south pole with the express purpose of understanding the provenance and thermal history of potential samples from the Artemis mission at the south pole landing sites.

2:00 p.m.

Livengood T. A.   Barker M. K. *   Bower D. M.   Hewagama T.   Ward J.

Moonba, a Micro-Rover for a Targeted Investigation of Lunar Surface Dust [#5092]
Moonba will be a small tele-operated rover transporting a microscope and lighting system for the purpose of characterizing photometric properties and physical structure of undisturbed lunar dust and regolith.

2:15 p.m.

Nicholas A. C. *   Englert C. R.   Janches D.   Sarantos M.   Finne T. T.   Brown C. M.   Budzien S. A.

Laser Optical Visualization of Ejecta from the Lunar Landscape (LOVELL) [#5047]
The LOVELL instrument concept is based on creating a sheet of light just above the lunar surface and observing photons scattered by incoming micrometeoroids passing through the lightsheet as well as the resulting dust ejecta from the impacts.

2:30 p.m.

 

DISCUSSION

2:45 p.m.

Farrell W. M. *   Bradley D. C.   Miles L. R.   MacDowall R. J.

Slow Dust Detector for Lunar Polar Surface Operation [#5005]
We describe a method of detecting micron-sized lofted dust, like that possibly ejected at the lunar polar terminator.

3:00 p.m.

O’Brien B. J. *

Varied Active Interactive Astronaut Tests of Dust Movements Combined with Fungible Apollo 12 Dust Detector Experiments [#5095]
This experiment will use interactive astronaut skills and ingenuity to develop a tool-kit for architectural design of Moon villages and observatories to optimise risk management of movements of lunar dust. The author established skills from Apollo.

3:15 p.m.

Wang X. *   Sternovsky Z.   Horányi M.   Deca J.   Garrick-Bethell I.   Farrell W. M.   Minafra J.   Bucciantini L.

Electrostatic Dust Analyzer (EDA) for Characterizing Dust Transport on the Lunar Surface [#5002]
An Electrostatic Dust Analyzer (EDA) is under development for characterizing electrostatic dust transport on the lunar surface. The south polar region exploration provides a great opportunity to perform such in situ experiment.

3:30 p.m.

Palomba E.   Dirri F. *   Longobardo A.   Biondi D.   Galiano G.   Boccaccini A.   Saggin B.   Zampetti E.   Scaccabarozzi D.

Vista Instrument: A ?-Thermogravimeter to Characterize the Lunar Dust Charging and the Physical Processes Concerning Volatiles Compound Around Lunar South Pole [#5020]
In the framework of Moon Exploration Programme, VISTA instrument concept and objectives, i.e. the characterization of charging and levitation processes, volatiles content in the regolith and water ice abundance in lunar south pole are described.

3:45 p.m.

Gershman D. *   Sarantos M.   Collinson G.   Zesta E.   Sittler E.   Collier M.

A Plasma Suite for the Lunar Surface [#5054]
We present a plasma suite intended to be deployed on the lunar surface to:  (1) characterize the charging of the lunar surface, (2) characterize the near-surface plasma environment, and (3) study the interaction of the solar wind with lunar regolith.

4:00 p.m.

 

DISCUSSION

 

Tuesday, April 28, 2020

HUMAN HEALTH AND PERFORMANCE

1:30 p.m.   Douglas Fir

Chairs:  Laurie Abadie and Kritina Holden

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Quincy C. D. *   Link B. M.

Understanding the Impact of the Deep Space and Lunar Environment on Humans and Biology [#5025]
Understanding the effects of the space environment on biological systems is critical to mission success. Investigations need to begin at the earliest possible time to provide opportunities for critical decision.

1:45 p.m.

Abadie L. J. *   Waid M. C.

Human Research on the Lunar Surface to Advance Missions to Mars [#5173]
As NASA returns to the Moon to establish a sustainable human presence, a challenge is the crew. NASA’s Human Research Program will use the unique platform of the lunar vicinity to identify ways to keep astronauts safe there and on missions to Mars.

2:00 p.m.

Sun S. C. *   Karouia F.   Lera M. P.   Parra M. P.   Ray H. E.   Ricco A. J.   Spremo S. M.

Lunar Life Sciences Payload Assessment [#5077]
A summary of the types of biological payloads that should be flown on CLPS and HLS to address a range of basic and applied research questions, based on an assessment of over 60 payload systems that have flown or are being developed.

2:15 p.m.

Niederwieser T. *   Zea L.   Stodieck L.

Enabling High-Throughput and High-Impact Space Life Sciences Research on the Lunar Surface [#5115]
To conduct a high load of biological investigations on the lunar surface, experiments have to be performed and analyzed semi-autonomously in-situ without the logistical challenges of time critical transport of heavy, perishable items back to Earth.

2:30 p.m.

Granata T. G.   Ille F. I.   Rattenbacher B. R.   Egli M. E. *

Effects of Low Gravity and Cosmic Radiation on Microalgae Growth and Polymere Production [#5111]
A life support system built by bioreactors is proposed, but because living cells respond to low gravity and cosmic radiation, the extent of possible long-term changes of the cells is uncertain. Thus, we aim at determining these effects.

2:45 p.m.

Holden K. *

Effects of Lunar Mission Gravitational Transitions on Fine Motor Task Performance [#5160]
Astronauts must be able to accurately interact with computer-based controls when they land on a planet’s surface. Given ISS results, testing fine motor skills on a lunar mission is the logical next step in assessing risk for deep space missions.

3:00 p.m.

Holden K. *

Practicing Crew Autonomy [#5166]
NASA has no experience conducting missions in which astronauts are operating completely autonomously. It is important that we take advantage of lunar missions as an opportunity to practice autonomy in order to be prepared for deep space missions.

3:15 p.m.

 

DISCUSSION

3:35 p.m.

 

BREAK

 

Wednesday, April 29, 2020

GEOPHYSICS

8:30 a.m.   Boxelder

Chairs:  Renee Weber and Clive Neal

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

8:30 a.m.

Schmerr N. *   Richardson J.   Ghent R.   Siegler M.   Young K.   Wasser M.   Whelley P.   Buczkowski D.   Carter L.   Connor C.   Connor L.   Bleacher J.   Fouch M.   Baker D.   Hurford T.   Jozwiak L.   Kruse S.   Lekic V.   Naids A.   Porter R.   Montesi L.   Richardson D. C.   Rumpf E.   Schorghofer N.   Sunshine J.   Goossens S.   Whelley N.   Wyrick D.   Zhu W.   Bell E.   DeMartini J.   Coan D.   Akin D.   Cohen B.   Mazarico E.   Neal C.   Panning M.   Petro N.   Strauss B.   Weber R.   Glotch T.   Hendrix A.   Parker A.   Wright S.

Preparing for Geophysical Science Enabled by Crewed and Robotic Missions on the Surface of the Moon [#5048]
Geophysics on the Moon will be an important tool for identifying key targets for geological prospecting, scientific sampling, ISRU, assessing hazards and risks to crews and infrastructure, and determining the deep workings of the lunar interior.

8:45 a.m.

Weber R. C. *   Neal C.   Banerdt B.   Beghein C.   Chi P.   Currie D.   Dell’Agnello S.   Garcia R.   Garrick-Bethell I.   Grimm R.   Grott M.   Haviland H.   Kawamura T.   Kedar S.   Lognonne P.   Nagihara S.   Nakamura Y.   Nunn C.   Ostrach L.   Panning M.   Petro N.   Schmerr N.   Siegler M.   Watters T.   Wieczorek M.   Zacny K.

Artemis:  Enabling the Lunar Geophysical Network [#5063]
This abstract describes potential benefits offered by human exploration of the Moon to the future Lunar Geophysical Network mission.

9:00 a.m.

Hurford T. A. *   Dai L.   Fouch M. J.   Garnero E. J.   Lekic V.   Lin W.   Maguire R.   Olsen K. G.   Schmerr N.   West J. D.   Xu Y.

Seismic Studies from the Lunar South Pole with Rigged, Low-Cost MET Seismometers [#5072]
Data from seismometers provide a critical approach to enable a detailed mapping of the interior of the Moon and rugged, low-cost MET seismometers can enable these studies from the lunar south pole.

9:15 a.m.

Courville S. W. *   Putzig N. E.   Sava P. C.   Mikesell T. D.   Perry M. R.

ARES and Artemis:  The Autonomous Roving Exploration System for Active Source Seismology on the Moon [#5055]
We propose active source seismology to investigate the concentration and distribution of water ice in lunar regolith at Artemis landing sites.

9:30 a.m.

Siegler M. *   Nagihara S.   Grott M.   Smrekar S.   Feng J.   Weber R.   Hayne P.   Neal C.

Global Heat Flux Predictions for Landing Sites:  Polar Advantages [#5140]
The south polar region of the Moon may be an ideal location to measure geothermal heat flux. Here we synthesize data from several recent missions to provide global predictions of the surface heat flux of the Moon.

9:45 a.m.

 

BREAK

9:55 a.m.

Nagihara S. *   Zacny K.   Grott M.

Astronaut-Deployed Heat Flow Probe for Measurements in the Lunar South Polar Region [#5013]
We propose a new design for an astronaut-deployed heat flow probe based on the lessons learned from the Apollo missions.

10:10 a.m.

Carroll K. A. *

Lunar Surface Gravimetry Vis-a-Vis Artemis [#5151]
During Apollo, the Traverse Gravimeter Experiment was used to survey around the Apollo 17 landing site, discovering that region’s geological structure. A modern gravimeter can be carried on Artemis landers and rovers, to make similar discoveries.

10:25 a.m.

Richardson J. A. *   Bell E.   Schmerr N. C.   Espley J. R.   Sheppard D. A.   Connor C. B.   Whelley P. L.   Strauss B. E.   Young K. E.

Magnetic Surveys to Probe the Lunar Subsurface [#5133]
Magnetic surveys at the lunar surface can help prospect for resources and improve models of the lunar dynamo. We demonstrate this with field studies of lava flows and tubes on Earth.

10:40 a.m.

Raymond C. A. *   Cochrane C. J.   Murphy N.   Weiss B. P.   Khurana K. K.   Angelopoulos V.

Investigating the Lunar Interior Using Long-Lived Surface Magnetometers [#5148]
Precise, flight-ready Vector Helium Magnetometers deployed on lunar landers, or in human-deployed packages, can determine the Moon’s conductivity, investigate its dynamo history, and inform safe crew operations and habitation on the lunar surface.

10:55 a.m.

Viswanathan V. *   Mazarico E.   Cremons D. R.   Merkowitz S.   Sun X.   Smith D. E.

Scientific Exploration of the Lunar South Pole with Retro-Reflectors [#5070]
Retro-reflector arrays placed on the Moon demonstrated their interdisciplinary scientific impact through the ongoing LLR experiment. NASA’s CLPS and Artemis programs to the south pole provide a unique scientific opportunity to build on this legacy.

11:10 a.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

VOLATILES I

8:30 a.m.   Aspen

Chairs:  Margaret Landis and Charles Hibbitts

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

8:30 a.m.

Mandt K. E. *   Mousis O.   Hurley D.   Bouquet A.   Luspay-Kuti A.

Using Composition of Volatiles in Lunar Permanently Shaded Regions to Determine Their Origins [#5164]
We outline a study using the LCROSS plume composition to determine the origin of its volatiles as a precedent for studies that are needed when in situ volatile composition is measured by landed missions in the Lunar Permanently Shaded Regions.

8:40 a.m.

Landis M. E. *   Hayne P. O.   Williams J.-P.   Paige D. A.

Stability Locations for Lunar Polar Volatiles from Diviner Lunar Radiometer Data:  Implications for Future Scientific Exploration [#5081]
We map the locations where volatiles (e.g., H2O, S, and toluene) are resistant to sublimation at both lunar poles, and discuss implications for exploration.

8:50 a.m.

Powell T. M. *   Rubanenko L.   Paige D. A.

Modeling Ice Stability in Small Permanently Shadowed Regions on the Moon [#5169]
We model the effect of lateral heat conduction on the stability of small cold traps on the Moon.

9:00 a.m.

Hayne P. O. *   Osterman D. P.   Greenhagen B. T.   Hanna K. D.   Paige D. A.   Siegler M. A.   Horvath T.   Jhoti E.

Polar Night Vision:  Thermal Infrared Imaging at the Lunar Surface [#5136]
Thermal infrared imaging can be used to identify cold-traps and find water ice, making astronaut and rover traverse planning and execution more efficient, and increasing science return from the lunar surface.

9:10 a.m.

Staehle R. L. *   Sellar R. G.   Clark P. E.   Hardgrove C.   Tang A.   Gim Y.   Hayne P.   Feldman S.

Lunar Volatiles Integrated Survey Packages [#5032]
Will Artemis astronauts pass over or near scientifically revealing or resource-relevant volatile deposits? To find out, we propose three integrated instrument packages to perform a surface/subsurface volatiles survey accompanying Artemis crews.

9:20 a.m.

 

DISCUSSION

9:45 a.m.

Livengood T. A. *   Chin G.   Clark C. W.   Coplan M.   McClanahan T. P.   Parsons A. M.

SNFLER:  Surface Neutron Flux with Lunar Empirical Ratio [#5060]
SNFLER is a surface-deployable neutron flux sensor to measure subsurface hydrogen at human-traversable (meter) scale to establish ground truth for orbital measurements. The SNFLER design compensates for systematic effects.

9:55 a.m.

Hibbitts C. A. *   Blewett D. T.

Simple Camera Concept for Surface Volatile Characterization and Mapping [#5056]
A 3-band IR imager can enable real time mapping of surface hydration on the illuminated Moon and in PSRs. The configurations presented use InGaAs or cryocooled detectors, one camera head or three, and have different performances, SWaP, and costs.

10:05 a.m.

Aslam S.   Bower D. *   Cepollina F.   Flatley T.   Hewagama T.   Jennings D.   Jhabvala M.   Livengood T. A.

Compact Lunar Mineralogy Imager (CLuMI) [#5144]
Compact Lunar Mineralogy Imager (CLuMI) is a MWIR/LWIR hyperspectral imager to identify and characterize lunar materials and ice(s) on surface and walls from 1-5 meters standoff distance.

10:15 a.m.

Aksoy M. *   Walter I.   Hollibaugh Baker D. M.   Piepmeier J. R.

Impact of Water Ice Presence in Lunar Regolith on Surface Brightness Temperatures from 1 to 10 GHz [#5125]
This abstract discusses the possibility of detecting water ice buried in lunar regolith using microwave radiometry within the 1-10 GHz bandwidth.

10:25 a.m.

Livengood T. A. *   Anderson C. M.   Bradley D. C.   Bulcha B. T.   Chin G.   Ehsan N.   Hewagama T.   Racette P. E.   Shappirio M. D.

Submillimeter Solar Observation Lunar Volatiles Experiment at the South Pole (SSOLVE@SP) [#5058]
The Submillimeter Solar Observation Lunar Volatiles Experiment (SSOLVE) is a submillimeter instrument to measure the absolute abundance of water molecules (H2O) above the lunar surface as well as its photolysis product, OH.

10:35 a.m.

Collier M. R.   Farrell W. M.   Keller J. W. *   Tucker O. J.   Stubbs T. J.   Halekas J. S.   Ruhunusiri S.   Clark P. E.   McLain J. L.

Hydrogen Albedo Lunar Observations from the Surface (HALOS) [#5027]
Observation of the lunar hydrogen cycle near the lunar poles.  A low-cost, low-mass, high-TRL, two-instrument suite is presented that will follow the evolution of solar wind hydrogen from impact, reflection (as ions and neutrals) to pick up in the solar wind.

10:45 a.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

COMPOSITION

8:30 a.m.   Cherry

Chairs:  Barbara Cohen and David Blewett

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

8:30 a.m.

Cohen B. A. *   Curran N. M.   Fassett C. I.   Jolliff B. L.   Kendall J. D.   Moriarty D. P.   Petro N. E.   Swindle T. D.   Valencia S. N.   Yingst R. A.   Young K. E.   Zellner N. E. B.

Dating Key Lunar Events with Artemis [#5052]
Probing PSRs / And bracketing the basins / Artemis dating.

8:45 a.m.

Sampson M. *   Osterman D.   Schindhelm R.   Veto M.   Meinke B.

Innovative Science Opportunities for Lunar Surface Science [#5014]
Ball’s innovative technologies for scientific measurements include thermal infrared radiometric measurements for compositional and thermophysical studies, high dynamic range visible imager, and advanced processing and algorithms.

9:00 a.m.

Blewett D. T. *   Hibbitts C. A.   Boldt J.

A Simple Camera with Spectral Response Tailored for Lunar Rock and Soil Discrimination:  A Tool for Astronauts and Robots [#5008]
A low-cost, COTS-based multispectral framing camera with wavelengths selected especially for study of lunar rocks and soils will provide a major increase in the science return compared to traditional RGB cameras.

9:15 a.m.

Clark P E. *   Sellar R. G.   Wilson D.

Handheld or Rover-Mounted Compact Patterned Filter IR Imager for Rapid Geochemical Analysis [#5030]
We propose to equip the astronaut crew with very compact handheld or rover mountable visible/IR imagers allowing instantaneously display of the character of lunar terrain in the instrument’s field of view (rock suite, mineralogy, surface volatiles).

9:30 a.m.

Cremons D. R. *   Abshire J. B.   Lucey P. G.   Stubbs T. J.   Mazarico E.

Multiwavelength Lidar for Remote Spectroscopic Measurements of the Lunar Surface [#5068]
Illumination conditions at the lunar south pole add challenges to obtaining passive spectral measurements in the mid-infrared. A multiwavelength lidar would address these challenges and provide a local survey of volatile concentrations.

9:45 a.m.

Wurz P. *   Riedo A.   Tulej M.   Grimaudo V.   Thomas N.

Investigation of the Surface Composition by Laser Ablation/Ionisation Mass Spectrometry [#5061]
We present a Laser Ablation Ionization Mass Spectrometer that is compact, portable, features simple operation, for in situ resource utilisation by providing chemical analysis of solids. It consists of a TOF analyser, a fs-laser, and a microscope.

10:00 a.m.

 

BREAK

10:15 a.m.

Shaw A. *   Gellert R.   Hiemstra D.   Aslam I.   Buckland D.   Dickinson C.   Fulford P.   McCraig M.   Schmidt M.

Artemis-Enabled Lunar Elemental Abundance APXS Investigation [#5015]
The Artemis Program gives the lunar exploration community an opportunity to gain tremendous information about lunar surface composition. Using APXS to determine elemental abundance and its variations with geologic context is important.

10:30 a.m.

Gabriel T.-S.-J. *   Hardgrove C.   Jun I.   Litvak M.

Nuclear Spectroscopy for Geochemical Assay in Human Exploration of the Lunar Surface and Poles [#5157]
Nuclear spectroscopy at the lunar surface not only answers open questions in lunar science, but is ideal for volatile resource assessment and providing ground-truth to regional maps. Their operational requirements for human exploration are discussed.

10:45 a.m.

Haviland H. F. *   Bertone P. F.   Christl M. J.   Caffrey J. A.   Apple J. A.

Neutron Measurements at the Lunar Surface [#5114]
This presentation provides an overview of the Neutron Measurements at the Lunar Surface instruments currently being developed for Astrobotic Mission 1 in 2021 and ongoing developments to extend this capability for science and radiation efforts.

11:00 a.m.

Clark C. W. *   Coplan M. A.   Graybill J. G.   Haun R.   Livengood T. A.   Lutz L. F.   Parsons A. M.   Putnam L.   Shahi C. B.   Su J. J.   Thompson A. K.

Lunar Cellular Network Neutron Spectrometer [#5147]
We propose a novel neutron spectroscopy architecture for the Artemis mission:  A cellular network of compact, lightweight, low-voltage/low-power neutron detectors, based on optical scintillation in noble gases detected by silicon photomultipliers.

11:15 a.m.

Willhite L. N. *   Southard A. E.   Bardyn A.   Arevalo R. D. Jr.   Grubisic A.   Danell R. M.   Ni Z.   Gundersen C.   Minasola N.   Yu A. W.   Fahey M. E.   Cohen B. A.   Briois C.   Thirkell L.   Colin F.   Makarov A. A.   CosmOrbitrap Consortium

Characterization of Regolith and Trace Economic Resources (CRATER) Instrument:  Integration into the Artemis Program [#5104]
The Characterization of Regolith and Trace Economic Resources (CRATER) instrument is a highly versatile, laser ablation orbitrap mass spectrometer being developed for lunar exploration.

11:30 a.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

EARTH SCIENCE

8:30 a.m.   Douglas Fir

Chair:  Michael Ramsey

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

8:30 a.m.

 

Invited Talk

8:45 a.m.

Gröbner J. G. *   Harra L. H.

A Lunar Fiducial Reference Site to Improve Climate Data Records [#5035]
Many essential climate variables are derived from basic Level 1 radiance or reflectance measurements from Earth observing satellites. This proposal aims at establishing the Moon as fiducial reference site for Earth observing satellites.

9:00 a.m.

Finsterle W. *   Haberreiter M.   Harra L.

Earth Energy Imbalance [#5126]
We will present requirement studies regarding accuracy and precision to successfully measure the Earth’s outgoing radiation from the lunar south polar area and discuss the technical challenges to achieve this with an absolute radiometer.

9:15 a.m.

Ramsey M. S. *   Christensen P. R.

Thermal Infrared Data of the Earth and Lunar Surface (from the Lunar Surface) [#5045]
Thermal infrared data from the lunar south pole could provide important Earth science observations of dynamic processes, as well as be available for lunar surface observations, as well as monitoring human habitation and operations.

9:30 a.m.

 

DISCUSSION

9:50 a.m.

 

BREAK

 

Wednesday, April 29, 2020

ASTROPHYSICS

10:05 a.m.   Douglas Fir

Chairs:  Jack Burns and Joe Lazio

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

10:05 a.m.

Morse J. A. *

Space Science with UVIS Telescopes on the Lunar Surface [#5069]
The lunar surface is a stable platform from which to conduct observational investigations of the cosmos. For some experiments it may even hold unique advantages. We describe several UV-visible telescope concepts capable of impactful science.

10:25 a.m.

Burns J. O. *   Hallinan G.

FARSIDE:  A Low Frequency Radio Array for the Lunar Farside [#5009]
The lunar farside is a quiet platform to conduct low radio frequency observations of the early universe’s Dark Ages, as well as magnetospheres of exoplanets. I will describe a NASA-funded study of an array of dipole antennas on the Moon.

10:45 a.m.

Bassett N. *   Burns J. O.   Rapetti D.   Tauscher K.

Taking Advantage of the Radio Quiet Lunar Farside with the FARSIDE Radio Array [#5007]
By blocking terrestrial RFI as well as Earth’s auroral radiation, the farside of the Moon provides a unique radio quiet environment for performing sensitive low frequency observations.

10:55 a.m.

Rapetti D. *   Tauscher K.   Mirocha J.   Burns J. O.

Data Analysis Pipeline for Global Neutral Hydrogen Observations with the Lunar-Based FARSIDE Array [#5094]
Using low radio frequency observations from the lunar far side, our analysis pipeline is designed to separate the evolution of primordial neutral hydrogen from large foregrounds by combining pattern recognition, statistical, and inference techniques.

11:05 a.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

VOLATILES II

11:10 a.m.   Aspen

Chairs:  Thomas Orlando and Gerardo Dominguez

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

11:10 a.m.

Dominguez G. *   Gillis-Davis J.   Tafla L.   Ogliore R.

Cavity Ringdown Spectroscopy for the Complete Isotopic Characterization of Lunar Surface Volatiles [#5029]
We describe a method that may allow for the in-situ investigation of polar volatile abundances and their isotopic compositions. Our presentation focuses on the complete isotopic characterization of water, but can be applied to other ices.

11:20 a.m.

Rafkin S. C. R. *   Olkin C.   Nowicki K.   Neal K.   Peterson K.   Paulson G.   Poston M.   Protopapa S.   Retherford K.   Silver J.   Singer K.

In Situ Determination of Surface Volatile Composition and Abundance with the Laser Absorption Spectrometer for Volatiles and Evolved Gas (LASVEGAS) [#5026]
The Laser Absorption Spectrometer for Volatiles and Evolved Gas (LASVEGAS) is an IR laser spectrometer undergoing TRL6 maturation for the Moon under DALI.  LASVEGAS is designed to meet high priority measurement objectives for science and exploration.

11:30 a.m.

Jones B. M.   Hodyss R.   Orlando T. M. *

A Very Light Weight Low Cost Compact Mass Spectrometer for Measuring Lunar Volatiles [#5129]
Desorbing neutrals from the lunar regolith from diurnal warm up or an impact event can be detected using a very light weight, low power consumption portable mass spectrometer that utilizes micro-plasma or cold electron ionization sources.

11:40 a.m.

Benna M. *   Sarantos M.   Schmerr N. C.   Malespin C. A.   Bailey S.

The Lunar Environment Monitoring Station (LEMS) [#5022]
The Lunar Environment Monitoring Station (LEMS) is a compact, autonomous, and self-sustaining instrument package tailored for deployment by crewed missions. LEMS will enable long-term monitoring of the exosphere and seismic activity of the Moon.

11:50 a.m.

Madzunkov S. *   Rained J.   MacNally P.   Simcic J.   Nikolic D.   Darrach M.   Fry D.

Lunar Cube Sat Mass Spectrometer with Linear Energy Transfer Spectrometer Radiation Sensor [#5145]
We report on the flight-quality JPL Lunar CubeSat Mass Spectrometer (LCMS) integrated with the JSC Linear Energy Transfer Spectrometer (LETS) for multi-day lunar surface exospheric and radiation investigations.

12:00 p.m.

Wilhelm M. B. *   Ricco A. J.   Chin M.   Eigenbrode J. L.   Jahnke L.   Furlong P. M.   Buckner D. K.   Chinn T.   Sridhar K.   McClure T.   Boone T.   Radosevich L.   Rademacher A.   Hoac T.   Anderson M.   Getty S.   Southard A.   Williams R.   Li X.   Smith T.   Podlaha O.   van Winden J.

ExCALiBR:  An Instrument for Uncovering the Origin of the Moon’s Organics [#5116]
We are developing ExCALiBR, an autonomous, miniaturized fluidic system, integrating lab techniques for lipid analysis. This system will enable future organic surveys on future NASA missions to the Moon, Mars, and Icy Worlds.

12:10 p.m.

Chin G. *   Aslam S.   Anderson C.   Barker M.   Bower D.   Hewagama T.   Livengood T.

The CORGIE (Confirming Orbital Remote-Sensing with Ground Information Experiments) Consortium [#5042]
The CORGIE consortium aims to develop a comprehensive package of Artemis astronaut deployed or operated experiments that confirm and extend orbital remote-sensing or orbital in situ observations of the lunar south polar environment.

12:15 p.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

LUNAR SURFACE OPERATIONS

1:30 p.m.   Boxelder

Chairs:  Kelsey Young and Lindsay Aitchison

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Head J. W. *   Scott D. R.   Pieters C. M.   Zuber M. T.   Smith D. E.   Mazarico E.   Barker M.   Neumann G.   Cremons D. R.   Deutsch A. N.

The Artemis Lunar Exploration Program:  A Planetary Science Exploration Perspective [#5075]
We describe a new era of human/robotic exploration partnerships for planetary science that build on past successes and incorporate new concepts, innovations, and technologies “to advance scientific discovery on the lunar surface,” to Mars and beyond.

1:40 p.m.

Coan D. A. *   Lindsey T. J.   Alpert B. K.   Kanelakos A. D.   Graff T. G.   Young K. E.

Extravehicular Activity Concept of Operations for Initial Crewed Lunar Surface Mission [#5098]
This abstract discusses the science-drive Extravehicular Activity (EVA) operations on the lunar surface, specifically focusing on the initial crewed mission for the Artemis lunar program.

1:50 p.m.

Feist B. F. *   Miller M. J.   Petro N. E.   Barry W. P.   Mavridis C.

Lunar Extra Vehicular Activity (EVA) Science Support Operations — Learning from Apollo and Shuttle for Application to Artemis [#5033]
Studying how science support activities were conducted during Apollo and Shuttle provides important lessons, including the mistakes that were made, for the return to the Moon. Here, we use historical material to provide recommendations for Artemis.

2:00 p.m.

Young K. E. *   Graff T. G.   Bleacher J. E.   Coan D.   Kanelakos A.   Lindsey T. J.   Reagan M.   Todd W.   Naids A.   Walker M.   Miller M.   Pittman C.   Rampe E. B.   Janoiko B.

Preparing for Crewed Science Operations on the Lunar Surface [#5083]
The NASA Science Operations community is fully integrated and preparing to support the execution of extravehicular activities (EVAs) on the Moon. We detail multiple areas of development as we simulate future lunar exploration in analog environments.

2:10 p.m.

Eppler D. B. *   Barker D.   Bell E.   Evans C.   Graff T.   Head J.   Helper M.   Hodges K. V.   Hurtado J.   Klaus K.   Neal C. D.   Schmitt H. H.   Skinner J.   Tewksbury B.   Young K. E.

Planning Framework for Executing Lunar Scientific Exploration [#5046]
Scientific exploration of the Moon will be executed by human and robotic agents, and each open science question should be evaluated on this basis. The key — never send a robot to do a human’s job, never ask a human to a job better executed by a robot.

2:20 p.m.

Kring D. A. *

A Geologist’s Perspective of Lunar Surface Operations with Smaller Pressurized Rovers [#5044]
A small pressurized rover provides access to a greater array of scientific targets and provides an environment that enhances crew productivity.

2:30 p.m.

Lee P. *   Bense N.   Fillhouer K.   Moye C.   Shubham S.

Astronauts and H2O Exploration at the Lunar Poles:  Scale and Mobility Systems [#5156]
The distribution of H2O ice at the lunar poles is complex and not simply confined to Permanently Shadowed Regions (PSRs). To adequately explore H2O ice terrains for science and ISRU, mobility systems capable of traversing 10s of km are required.

2:40 p.m.

Schingler J. K.   Bell J. *   Elkins-Tanton L.

Lunar Surface Interaction Opportunities [#5059]
In addition to individual mission planning and broad architectures, lunar surface interaction is a distinct capability in need of development, both to avoid conflict and to accelerate activity in support of sustained presence.

2:50 p.m.

 

DISCUSSION

3:10 p.m.

Ehrlich J. W. *   Cichan T.   Bierhaus E.

Science Leveraged by a Human Lunar Presence [#5051]
Humans will be traveling back to the Moon and landing at the lunar south pole. This endeavor drives a new era of scientific investigation of deep space, building on Apollo and propelling human spaceflight forward towards further discovery.

3:20 p.m.

Lewis R. *   Hoffman S.   Gruener J.   Jagge A.   Deitrick S.   Lawrence S.   Britton A.   Mueller R.   Toups L.

Site Planning and Design to Enable and Advance Lunar Science Exploration [#5168]
NASA’s systems view of lunar environmental and operational characteristics to inform Moon and testbed-specific aspects of site design and understand the interplay of the surface elements, resources, and environment to advance science exploration.

3:30 p.m.

Speyerer E. J. *   Lawrence S. J.   Stopar J. D.   Robinson M. S.   Jolliff B. L.

Planning and Optimizing Future Traverses for Lunar Polar Prospectors [#5119]
Traverse optimization can increase the science return of future landed missions. We highlight a new tool to identify traverses around key regions of scientific interest, while keeping within engineering constraints (i.e. future lighting conditions).

3:40 p.m.

Petro N. E. *   Mazarico E. M.   Kendall J. D.   Wright E. T.   Schmitt H. H.   Feist B. F.   Eppler D. B.

Blinded by the Light:  Illumination Considerations for Artemis Site Selection, Traverse Planning, and Instrument Operations [#5073]
A mission to the lunar south pole will have to contend with a Sun that is never more than a few degrees above the horizon. This is a planning constraint as there is a ~50º cone around the Sun where up- and down-Sun operations will be challenging.

3:50 p.m.

Fassett C. I. *   Zanetti M.

Effective Crewed Surface Science Near the Lunar South Pole:  Some Illumination Considerations [#5067]
The low solar elevation at landing sites near the south pole will affect crew traverses, crew observations, and other science measurements. Discerning surface characteristics traversing up-Sun and down-Sun and in shadows can be tricky.

4:00 p.m.

John K. K. *   Johansen M. R.   Garcia A. H.   Hill J. J.   Brown G. L.

Dust Mitigation — Impacts and Opportunities for Science on the Lunar South Pole [#5066]
Lunar dust mitigation efforts and technologies will enable successful lunar surface science investigations.

4:10 p.m.

 

DISCUSSION

4:30 p.m.

Graff T. G. *   Young K. E.   Evans C. A.   Bleacher J. E.   Kanelakos A. D.   Wray S. J.

Lunar Surface Geoscience Training for Astronauts [#5085]
A comprehensive multi-phased geoscience training program is established for training astronauts from initial candidates to assigned crew for lunar surface missions. The program phases, recent highlights, and forward planning are summarized.

4:40 p.m.

Runyon K. D. *   Hibbitts C. A.   Handelman D. A.   Nord M. E.   Núñez J. I.   Seelos K. D.

Avatar for Landed Lunar Immersive Exploration [#5117]
Geologic exploration by a rover with an immersive reality interface will aid operators to create vastly more efficient operations, superior science return, and more effective exploration.

4:50 p.m.

Walker M. E. *   Burns J. O.   Szafir D. J.

Mixed Reality Interfaces for the Moon and Beyond:  Advancing Surface Telerobotic Interfaces in the NASA Artemis Program [#5071]
To successfully achieve planned mission goals, humans will likely need to turn to the field of robotics to support these human missions to the Moon. Mixed reality interfaces utilizing head-mounted displays can enhance current teleoperation interfaces.

5:00 p.m.

Menon M. S. *   Walker M. E.   Koris D.   Szafir D.   Burns J. O.

Virtual Reality Simulator for Telerobotics Research to Enable Artemis and the FARSIDE Low Frequency Radio Telescope [#5017]
Future space missions will increasingly rely on robotic systems. Designing/testing such systems requires field analogs which may not always be feasible. We are developing physically realistic lunar virtual field analog to facilitate robot testing.

5:10 p.m.

Kumar A. *   Bell M. M.   Burns J. O.

Telerobotic Assembly Research and Artemis Infrastructure to Enable the FARSIDE Mission [#5010]
Telerobotic assembly on the Moon has yet to be attempted. We developed a methodology to assess the human factors associated with teleoperated assembly tasks. Our research and Artemis infrastructure can enable lunar missions such as FARSIDE.

5:20 p.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

CARTOGRAPHY

1:30 p.m.   Aspen

Chairs:  Samuel Lawrence and Lisa Gaddis

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Mouginis-Mark P. J. *   Boyce J. M.

Quo Vadis Astronauts? [#5003]
Nobody goes anywhere without a map showing near-by places of interest, and the hazards of going off-route. Why would future lunar explorers be any different? We describe the need for new lunar maps, and the challenging schedule to produce them.

1:40 p.m.

Skinner J. A. Jr. *   Hagerty J. J.   Fortezzo C. M.   Huff A. E.   Hare T. M.   Hunter M. A.

Coordinated Geologic and Geo-Thematic Maps:  The Unifying Platform for Maximizing Success of Lunar Surface Science [#5128]
Theme-diverse geological maps are essential, not optional, infrastructure for exploration. The question is not whether geologic maps will be made to support Artemis (they will), but rather how useful, timely, and consistent they will be.

1:50 p.m.

Fergason R. L. *   Archinal B. A.   Bennett K. A.   Bland M. T.   Gaddis L. R.   Galuszka D. M.   Redding B. M.   Richie J.   Weller L.   Lee E.   Rosiek M.

Geodetically Controlled Products:  Critical to the Success of Artemis and a Sustained Human Presence on the Moon [#5103]
Geodetically controlled products provide accurate basemaps that enable and enhance the science and exploration that could be performed by human crews on the lunar surface and they facilitate communication between engineers and scientists.

2:00 p.m.

 

DISCUSSION

2:15 p.m.

Law E. L. *   Day B. H.   Treks S. S.

NASA Moon Trek Applications in Lunar Science and Exploration [#5080]
This presentation will highlight how NASA’s Moon Trek, an interactive visualization and analysis online portal, applies to lunar scientific research, and planning of lunar missions by NASA, its commercial, and international partners.

2:25 p.m.

Gaddis L. *   Weller L.   Adoram-Kerchner L.   Hare T.   Archinal B.   Goossens S.   Mazarico E.   Speyerer E.   Haruyama J.   Iwata T.   Namiki N.

Updated SPICE and New Tools for Working with Kaguya Terrain Camera Data [#5099]
We report on our work to improve the orbital data for the Kaguya mission, update SPICE, develop tools for processing the Terrain Camera data in ISIS3, and building improved mosaics, and to archive the resulting products and tools.

2:35 p.m.

Stein T. C. *   Arvidson R. E.

The PDS Analyst’s Notebook:  Providing Context for Landed Operations and Adding Value to Mission Archives [#5016]
The PDS Analyst’s Notebook supports data discoverability for landed missions by integrating data, planning and targeting information, and documentation to provide context in which data were collected. Available for numerous Moon and Mars missions.

2:45 p.m.

Baker D. M. H. *   Acton C.   Banks M. E.   Crichton D.   Gaddis L.   McClanahan T.   Morgan T.   Padams J.   Stein T.   Williams D. R.

Maximizing the Scientific Return from Lunar Surface Science Missions Through Data Archiving and Services [#5159]
We summarize current services and data that the Planetary Data System provides to the lunar science community and we outline important considerations for the future archiving of and user access to lunar surface science data.

2:55 p.m.

Britton A. W. *   Jagge A. M.   Deitrick S. R.

Characterizing Landing Sites and Exploration Zones Near the Lunar South Pole [#5123]
Characterizing landing sites and exploration zones near the lunar south pole using a top-down science-enabling methodology. This line of work can be used to aid NASA’s Artemis program as well as other governmental and commercial endeavors.

3:05 p.m.

Deitrick S. R. *   Russell A. T.   Loza S. B.

Landing Site Analysis for a Lunar Polar Water Ice Ground Truth Mission [#5120]
We analyzed four large PSRs at the lunar south pole to determine the most ideal location to land a polar water ice ground truth mission.

3:15 p.m.

 

DISCUSSION

3:35 p.m.

 

BREAK

 

Wednesday, April 29, 2020

SAMPLES

1:30 p.m.   Cherry

Chairs:  Bradley Jolliff and Julie Mitchell

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Schmitt H. H. *

Critical Field Geological Observational and Sampling Objectives for Artemis Near-South Pole Exploration [#5028]
Continued synthesis of observations and sample analyses, resulting from Apollo missions to the Moon, have identified a significant number of specific objectives for future sampling at a potential near-south pole Artemis landing site.

1:45 p.m.

Jolliff B. L. *   Shearer C. K.   Petro N. E.   Cohen B. A.

Sampling South Pole-Aitken Basin to Determine the Age of the Impact Event and Test the Cataclysm Hypothesis [#5091]
An Artemis mission to the Moon’s south pole will enable collection and return to Earth of samples that can be analyzed to address Decadal science objectives relating to South Pole-Aitken Basin.

2:00 p.m.

Borg L. E. *   Shearer C. S.

Evaluating the Significance of Lunar Chronology with New Samples [#5021]
New samples collected from the south pole region of the Moon will facilitate evaluation of whether observations constraing the origin of the Moon refelct global or regional scale processes.

2:15 p.m.

Mitchell J. L. *   Zeigler R. A.   McCubbin F. M.   Needham D. H.   Amick C. L.   Lewis E. K.   Graff T. G.   John K. K.   Naids A. J.   Lawrence S. J.

Planning for the Preservation and Curation of Artemis Returned Samples [#5096]
Artemis sample return is necessary for enabling science, engineering, and operations activities on the lunar surface and for lunar studies on Earth. Here we report our ongoing work on contamination control, storage, and long-term sample preservation.

2:30 p.m.

Núñez J. I. *   Klima R. L.   Murchie S. L.   Warriner H. E.   Boldt J. D.   Lehtonen S. J.   Maas B. J.   Greenberg J. M.   Anderson K. L.   Palmer T. W.   McFarland E. L.

Enabling Surface Exploration and High-Grading of Lunar Samples with the Advanced Multispectral Infrared Microimager (AMIM) [#5149]
AMIM combines microscopic imaging with microspectroscopy to provide grain-scale mapping of minerals and ices of rocks and soils for human exploration and resource prospecting. AMIM enables the high-grading of lunar samples for future return to Earth.

2:45 p.m.

Moriarty D. P. III *   Petro N. E.   Cohen B. A.   Metzger P.   Zolensky M. E.   Watkins R. N.   Valencia S. N.   Curran N. M.   Young K. E.   Kendall J. D.   Stubbs T. J.   Yano H.   Evans M. E.   Westphal A. J.

AEGIS:  Aerogel Experiment Gathering Impactor Samples [#5141]
AEGIS (Aerogel Experiment Gathering Impactor Samples) is an instrument concept that would greatly improve our understanding of the micrometeorite and blast zone particle environment, capturing the dynamical and physical properties of small impactors.

3:00 p.m.

 

DISCUSSION

3:20 p.m.

 

BREAK

3:30 p.m.

Smith D. J. *   Schuerger A. C.   Moores J. E.   Reitz G.   Boston P.

Testing Forward Contamination Outcomes by Recovering Spacecraft Debris from Impact Sites Near the Lunar South Pole [#5011]
Spacecraft leaving Earth carry microbiological contaminants onboard. We will review predicted microbe survival outcomes for three recently crashed vehicles near the lunar south pole and outline a mission framework for retrieving spacecraft debris.

3:45 p.m.

Barker D. C. *   Mueller K.   Martinez M. R.   Luna D.   Shipman A.   Nyarwaya D.   Meen J. K.

Lunar Solar Soil Reduction Experiment [#5137]
A surface deployable reduction experiment package for the in situ solar reduction of lunar soil to nearly 2400 °C, allowing for the quantification and separation of metal and volatile species and samples for return analysis in support of ISRU.

4:00 p.m.

Kring D. A. *

Producing Transformative Lunar Science with Geologic Sample Return:  A Note About Sample Mass [#5037]
Experience with six Apollo lunar surface missions suggests well-trained crew with well-honed science objectives will collect 2.3 kg/EVA hr/crew member.

4:15 p.m.

Pieters C. M.   Lucey P. G. *

Extensive Feldspathic Terrain Across the Lunar South Pole Presents a Challenge for Diverse Sample Collection [#5090]
Collecting diverse lithologic samples in the south pole region will require geologic training and modern tools for efficient identification and characterization.

4:30 p.m.

Boston P. J. *   Schmidt G. K.

Seeking Earth-Derived Biosignatures on the Moon:  Science Case and Operational Considerations [#5135]
What is the case for Earth ejecta containing biomolecular and paleontological materials that can survive transport, impact, and subsequent lunar weathering? Where and how can we find them in lunar science and exploration missions?

4:45 p.m.

Seibert M. A. *

Robotic Regolith Sample Collection During Crewed Rover Traverses [#5106]
Crewed rover traverses will cover a larger area than robotic vehicles. Consistent methods of regolith collection across stations will be required. This task can be optimized using robotics with mixed control (e.g. direct, remote, or autonomous operation).

5:00 p.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

SPACE WEATHER AND HELIOPHYSICS SCIENCE

1:30 p.m.   Douglas Fir

Chairs:  Barbara Giles and James Favors

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

1:30 p.m.

Mazur J. *

Radiation at the Lunar Surface

1:45 p.m.

Golub L. *

Improving Space Weather Forecasting with EUV Observations [#5023]
Accurate predictions of harmful space weather effects are mandatory for the protection of astronauts at the Moon. Observation of the corona at EUV wavelengths offers the possibility of improving our forecasts of geo- and seleno-effective events.

2:00 p.m.

Dandouras I. *   Bamford R. A.   Branduardi-Raymont G.   Chaufray J.-Y.   Constantinescu D.   De Keyser J.   Futaana Y.   Grison B.   Lammer H.   Milillo A.   Nakamura R.   Roussos E.   Taylor M. G. G. T.   Carpenter J.

Space Plasma Physics Science Opportunities from the Moon Surface [#5049]
In preparation of the scientific opportunities offered by the Deep Space Gateway, including from the Moon surface, we have formed an ESA topical team to prepare and to support the definition of payload studies in the field of space plasma physics.

2:15 p.m.

Rahmanifard F. R. *   Schwadron N. A.   Wilson J. K.   Jordan A. P.   Spence H. E.   de Wet W. C.

Realtime Monitoring of Ionizing Radiation on the Lunar Surface in the Upcoming Worsening Space Environment [#5171]
The unprecedented decline in the strength of solar cycles has been persisting over a decade, indicating that we are at the beginning of a secular solar minimum. We use data from CRaTER to investigate the radiation environment throughout cycle 25.

2:30 p.m.

Wilson J. K. *   Spence H. E.   Schwadron N. A.   Case A. W.   Looper M. D.   Jordan A. P.   de Wet W.   Kasper J.

CRaTER’s SEP Index Detects Small Solar Particle Events and Maps Lunar Radiation [#5127]
Search for solar trend / Finds lunar radiation / Serendipity!

2:45 p.m.

Bale S. D. *   Bonnell J. W.   Burns J.   Goetz K.   Halekas J. S.   Malaspina D. M.   Page B.   Pulupa M.   Poppe A. R.   MacDowall R. J.   Maksimovic M.   Zaslavsky A.

The Lunar Surface Electromagnetics Experiment (LuSEE) [#5001]
We will describe the Lunar Surface Electromagnetics Experiment (LuSEE), which is selected under the LSITP program to be manifested as a payload on a lunar polar lander.

3:00 p.m.

Wu X. *

Mini.PAN:  Real-Time Penetrating Particle Analyzer for ARTEMIS [#5074]
Mini.PAN is an innovative energetic particle detector to precisely measure and monitor the flux and composition of highly penetrating particles (> ~100 MeV/nucleon) in the lunar orbit and on the lunar surface in the framework of the ARTEMIS program.

3:15 p.m.

de Wet W. C. *   Rahmanifard F.   Wilson J. K.   Jordan A. P.   Schwadron N. A.   Spence H. E.   Smith S. S.   Townsend L. W.

CRaTER Observations and Permissible Mission Duration for Human Operations in Deep Space [#5139]
We have produced tables of permissible mission durations for deep-space missions under different solar conditions and mission profiles.

3:30 p.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

ISRU

3:50 p.m.   Aspen

Chairs:  Dina Bower and Kristen Bennett

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

3:50 p.m.

McAdam A.C. *

Initial Findings from the NASA Lunar Water Insitu Measurement Study (LWIMS)

4:05 p.m.

Keszthelyi L. *   Gaddis L.   Ostrach L. R.   Bennett K.   Fortezzo C.   Chertok M.   Edgar L.   Hagerty J.

Resource Exploration and Assessments and Lunar Surface Science [#5146]
Resource exploration and assessment by human crews will be invaluable for making ISRU near the lunar poles a reality.

4:15 p.m.

McAdam A. C. *   Baker D. M. H.   Cardiff E. H.   Garvin J. B.   Parsons A. M.   Glavin D. P.   Mahaffy P. R.   Bower D. M.   Arevalo R. D.   Gendreau K. C.   Arzoumanian Z.   Young K. E.   Cohen B. A.   Jones J.   Kent R.   Bleacher J. E.   Amato M.   Lupisella M. L.

Lunar Surface Measurements to Inform Both Science and In Situ Resource Utilization [#5101]
We discuss multi-purpose measurement approaches that can enhance science return from both crewed and non-crewed missions while also informing ISRU planning that will facilitate a sustained human presence on the Moon.

4:25 p.m.

Neal C. R. *

The Science Behind Lunar Resource Exploration and Utilization [#5088]
Artemis astronauts have the potential to investigate the origin of lunar volatile deposits at the lunar south pole, as well as evaluating their exploration and commercial potential.

4:35 p.m.

Bower D. M. *   Hewagama T.   Gorius N.   Jin F.   Trivedi S.   Li S.   Aslam S.   Misra P.   Livengood T. A.   Kolasinski J. R.

Correlated Raman and Reflectance Spectroscopy for In Situ Lunar Resource Exploration [#5113]
The Rapid Optical Characterization Suite for in situ Target Analysis of Lunar Rocks (ROCSTAR) is designed to search for minerals and volatiles in lunar materials using combined visible (VIS) and  (NIR) Raman with (NIR-MIR) reflectance spectroscopy.

4:45 p.m.

Tewes P. *   Holquist J.   Bower C.   Kelsey L.

ISRU-Derived Water Purification and Hydrogen Oxygen Production (IHOP) Component Development [#5161]
Paragon Space Development Corporation and Giner, Inc. are pursuing development and testing of key components in the ISRU-derived water purification and Hydrogen Oxygen Production (IHOP) subsystem as well as advancement of the subsystem architecture.

4:55 p.m.

Utz R. C.   Warrenfeltz B.   Pass S.   Valdez T. I. *

Robust Electrolyzer for Lunar ISRU Applications [#5057]
Teledyne Energy Systems has developed an electrolyzer that is tolerant towards the contaminants projected to be found in water extracted from lunar ISRU processes. This paper will discuss testing completed on lunar ISRU process water simulant.

5:05 p.m.

Whizin A. D. *   Metzger P. T.   Dreyer C. B.   Focia R. J.   Asquith C. D.

In-Situ Construction and Resource Extraction for Long-Term Lunar Surface Exploration [#5170]
The Magnetic Induction Construction and Resource-utilization Operations System (MICROS) concept involves the preparing or pre-conditioning of the lunar surfaces prior to the human arrival by creating landing pads, berms, and habitat structures.

5:15 p.m.

Britt D. T. *   Cannon K. M.

High Fidelity Lunar Highlands and Mare Regolith Simulants:  Enabling Tools for Lunar Surface Exploration and ISRU Development [#5138]
The Exolith Laboratory of the Center for Lunar and Asteroid Surface Science provides high fidelity, mineralogy-based simulants of the Lunar Highlands and Mare regolith to the lunar exploration community to support research and hardware development.

5:25 p.m.

Richardson J. A. *   Esmaeili S.   Baker D. M. H.   Shoemaker E. S.   Kruse S.   Jazayeri S.   Whelley P. L.   Garry W. B.   Bell E.   Young K. E.   Carter L. M.   Schmerr N. C.

Prospecting Buried Resources with Ground Penetrating Radar [#5134]
Ground Penetrating Radar (GPR) is a field portable method that can enable the identification of resources in the shallow (0-20 m) subsurface. We use this technique to locate analogous ice deposits and lava tubes at field sites on Earth.

5:35 p.m.

 

DISCUSSION

 

Wednesday, April 29, 2020

SPACE BIOLOGY

3:50 p.m.   Douglas Fir

Chair:  Kevin Sato

BACK TO TOP

Times

Authors (*Denotes Presenter)

Abstract Title and Summary

3:50 p.m.

Heinse R.   Monje O. *   Romeyn M.   Fritsche R.

Calibrating Plant Watering System Models with Longterm Lunar Capillary Data [#5065]
We propose to collect the first longterm imbibition and moisture hysteresis data from capillary substrates under the influence of partial gravity for testing hydraulic models used to design future sustainable lunar and martian plant growth systems.

4:05 p.m.