AEGIS: AEROGEL EXPERIMENT GATHERING IMPACTOR SAMPLES. D. P. Moriarty III1,2, N. E. Petro1, B. A. Cohen1, P. Metzger1, M. E. Zolensky1, R. N. Watkins3, S. N. Valencia1,6, N. M. Curran1,2, K. E. Young1, J. D. Kendall1, T. J. Stubbs1, H. Yano3, M. E. Evans2, and A. J. Westphal9, 1NASA GSFC (8800 Greenbelt Rd, Greenbelt MD 20771; Daniel.P.Moriarty@NASA.gov), 2USRA, 3UCF, 4NASA JSC, 5PSI, 6UMCP, 7UMBC, 8JAXA, 9UCB.

Introduction: NASA’s Artemis Program encompasses sustained human and robotic activity near the lunar south pole, presenting a unique set of opportunities and challenges. A key consideration with implications for both science and safety is the flux of impactors impinging mission hardware and personnel. Regardless of the location selected, the Artemis site will be subject to two primary types of impactors: (1) micrometeorites (including interplanetary dust, interstellar dust, and solar wind particles) and (2) lunar regolith particles accelerated by rocket exhaust during spacecraft landing and takeoff. The basic principles of these processes are understood through models, laboratory experiments, and analyses of lunar and orbital mission data. However, the Artemis architecture is unprecedented in terms of its duration and complexity, and the actual particle environment may differ significantly from predictions. Key differences from previous missions expected to influence exhaust plume ejecta include the landing/takeoff cadence, lander size, engine configuration and thrust pattern, and the local terrain roughness and slopes1,2.

AEGIS (Aerogel Experiment Gathering Impactor Samples) is an instrument concept that would greatly improve our understanding of the micrometeorite and blast zone particle environment. Briefly, the AEGIS concept employs aerogel collectors at the lunar surface, optimized to capture both micrometeorites and blast zone particles (Fig. 1). Intended for south polar CLPS deployment prior to Artemis 3, aerogel panes would be collected by Artemis astronauts for return to Earth, allowing detailed analyses of physical and dynamical properties. Installation of replacement panes (for collection during subsequent human exploration) enables assessment of the evolution of the landing zone through the repeated landings comprising Artemis 4-7 (including support missions), and offers longer collection times to capture relatively rare particles such as interstellar dust.

In Greek mythology, the aegis is a fearsome shield wielded by Athena and Zeus. Traditionally, operating under an aegis is associated with protection by a powerful, knowledgeable, or benevolent source. Fittingly, the primary science and exploration-enabling goals for AEGIS are as follows:

1. Assess the flux and composition of micrometeorites impacting the lunar surface to better understand the reservoirs of these impactors (constraining models of NEO origin and depletion as well as the elemental and isotopic compositions of interplanetary dust, interstellar dust, and solar wind particles).
2. Determine the energies and trajectories of micrometeorites to better understand their role in space weathering and the hazards posed to human and robotic lunar surface operations.
3. Determine the flux, trajectories, energies, physical properties (including grain size), and compositions of blast zone particles to better understand blast zone processes (i.e., the energy coupling between lander exhaust and the lunar surface) and the hazards posed to surface activity.
4. Understand the evolution of the blast zone particle load through repeated landings of variable spacecraft sizes, engine configurations, and locations.

Aerogel Collector Optimization: Work is ongoing to mature the AEGIS concept, specifically focused on the implementation of aerogel impactor sample collectors. Aerogel is specifically engineered to capture and preserve the trajectory of small, high velocity particles while minimizing thermal and other alterations. Therefore, aerogel is ideally-suited to
complete saturation by dust-sized particles11. To preserve captured micrometeorite tracks, and limit saturation of aerogel collectors by blast zone particles, it may be prudent to deploy articulated shielding to control the timing and duration of exposure to incident particles. Such an approach, while increasing the complexity of the instrument, would also enable particles corresponding to specific landing events or phases within individual events to be targeted. Aerogel saturation may also be prevented by deployment at greater distances from the location of the largest landing vehicles, as the size of the blast zone is strongly dependent on the dry mass of the lander1. The model illustrated in Fig. 2 demonstrates that particles lofted by exhaust plumes can be accelerated above the lunar escape velocity. Initial calculations estimate that an orbital vehicle such as the Gateway will be subject to >2000 dust-scale blast zone particle impacts/m2. Coordinated orbital aerogel deployment (similar to the GIDC9 or Tonpopo12) would be of high scientific value for further characterizing the implications of energy coupling between rocket exhaust and the lunar surface.

Resources: This concept represents a relatively simple, low-cost option to enrich and diversify the science return of the Artemis Program while refining assessments of risks to crew and equipment. The collector is entirely passive, with the exception of optional momentum sensors and articulated shielding or deployment mechanisms. Aerogel is a very low-density substance, so the mass is nearly all in the mounting hardware. Previous estimates for the GIDC (an accordion-style collector with collecting area of ~1 m2) estimate a furled volume of ~65 cm3 and mass <20 kg. Expected crew interaction is nominally brief (collecting and optional replacing of collectors). Mounting configuration on the host lander is flexible to accommodate other instruments. Further maturation of the concept (including costing and engineering constraints) is currently being pursued at NASA GSFC.