LPI logo

Meeting Planning Services

The series of Lunar Surface Science Workshop (LSSW) short, focused virtual sessions will continue to solicit input from the community on the potential for new scientific research that could be enabled by human exploration near the lunar south pole. In addition, we want to identify and help to close knowledge gaps associated with crew activities and safety.

 

Virtual Session 18: Implementing a Coordinated Lunar Resource Evaluation Campaign
October 14, 2022

Background and Motivation
This Lunar Surface Science Workshop (LSSW) is a follow-on to that held on July 11, 2022: Defining a Coordinated Lunar Resource Evaluation Campaign, which resulted in clarity from the international lunar community regarding what a coordinated lunar resource evaluation campaign would look like. Now, the hard work begins because implementing such a campaign will be challenging as it has to consider many factors:

  • How will the campaign be managed? Will this be a single entity? Does everyone who participates get a say?
  • Who participates and how?
  • How will the data obtained be used? Should there be an open data policy? Licensing and access need to be defined.
  • How will working relationships be developed with entities not participating in the campaign?
  • What sort of policy precedents will this campaign set both intentionally and serendipitously?


The Moon's polar regions contain volatile deposits that could be used for life support and rocket fuel, but as noted by LSSW 17, vital data are lacking. Orbital data have been used to propose the best targets for surface exploration (e.g., Cannon and Britt, 2020, Icarus 347, Article 113778; Brown et al., 2022, Icarus 377, Article 114874), and these exercises demonstrate the need for a resource evaluation campaign and why it should be international in nature. For example, the top ten best sites for polar volatiles noted by Brown et al. (2022) cover an area of 6,114 km2.

Goals of the Workshop

  • Highlight the issues that need to be considered when implementing a coordinated lunar resource evaluation campaign
  • Develop implementation strategies for a coordinated lunar resource evaluation campaign with a focus on volatile deposits at the poles of the Moon


Focusing Data
Please see the findings and recommendations from LSSW 17. One of the recommendations is especially pertinent:

Lunar Surface 18 Program 

 

Virtual Session 17: Defining a Coordinated Lunar Resource Evaluation Campaign
July 11, 2022

Background and Motivation
Evaluating the potential of local resources, particularly ice deposits at the lunar poles, in sustaining human exploration of the Moon has important implications for science, exploration, and commerce. At this time, NASA is investing in technology to harvest and use such resources and in missions to identify such ice-rich deposits [SMD missions VIPER, TrailBlazer, LunaH Map, PROSPECT in partnership with ESA, and the ShadowCam instrument that will fly on KPLO; STMD missions Polar Resources Ice Mining Experiment-1 (PRIME-1) and Lunar Flashlight; HEOMD/ESDMD mission Lunar IceCube]. Besides the United States, other countries have also proposed lunar orbiter and surface missions to the lunar poles for similar reasons. However, while the data to be obtained from these missions are quite synergistic and represent a good start to evaluating such resources, they do not represent a coordinated effort to understand them. In order to understand if these lunar resources could be used to sustain humans on the surface of the Moon, much more diverse and detailed information regarding the locations, amounts, distributions (heterogeneity), composition, accessibility, extractability, etc., is needed. A coordinated lunar resource evaluation campaign could obtain the required data.

Focusing Questions

  • What constitutes a coordinated lunar resource evaluation campaign?
  • What information does a coordinated lunar resource evaluation campaign need to obtain?

Goals

  • Identify the basic information needed to evaluate ice deposits at the lunar poles, including the constraints/ranges required (i.e., local form, distribution, depth, composition, minimum viable abundance, data fidelity, variability, accessibility, extractability), which would inform measurement methods.
  • Identify the measurement types and characteristics (such as resolution, coverage, etc.) that can be obtained to provide this information and the types of missions that could supply these data, including the areas on the Moon to be evaluated.
  • Identify ways of consolidating and compiling the information into an accessible, usable form (e.g., geostatistical modeling leading to resource favorability maps).

Program and Abstracts

Lunar Surface 17 Program View E-Posters

Findings and Recommendations

Lunar Surface 17 Report

 

Virtual Session 16: Assessing the Value of Modern Field Geology Tools for Artemis
June 16, 2022

A key theme of the Artemis campaign is evolving the lessons of Apollo to move into the next bold era of human planetary exploration. This workshop will focus on a key question that has emerged in previous LSSW virtual sessions: Can we leverage 21st–century advances in field geology tools and practices to improve the science return from Artemis missions?

Focusing Questions
LSSW 16: Assessing the Value of Modern Field Geology Tools for Artemis, the first of two planned workshops, will start this community conversation by considering several key questions:

  • Should astronauts focus on traditional field geology or making in-situ measurements while on the surface of the Moon?
  • How would fieldwork on the Moon compare to modern fieldwork in other remote or extreme locations on Earth?
  • What types of measurements should be done in-situ during astronaut surface EVAs, and what specifically needs to be brought back to Earth for analyses? What equipment should astronauts have available to make those measurements?
  • What role would handheld or “field laboratory” instruments have in high-grading and in-situ sample analysis, particularly in the context of potential long-duration operations at the Artemis Base Camp?


The first session, LSSW 16, will consist of invited speakers and focused breakout sessions designed to promote conversations on these important questions.

Agenda 

 

Virtual Session 15: We Are Going! Artemis Community Updates
May 10, 2022

Over the past year, significant progress has been made across all aspects of Artemis. This LSSW session will focus on communicating updates from NASA HQ and elements across Artemis. NASA HQ updates will include leaders across all three mission directorates, the agency, and elements within each mission directorate relevant to accomplishing lunar surface science objectives. There will also be updates from teams across the agency preparing hardware, operations, and training concepts to support Artemis. The Lunar Exploration Analysis Group (LEAG) will provide overviews of recently completed specific action team reports. There will be a briefing on the relevant portions of the recently completed Planetary Decadal Survey.

 

Virtual Session 14: Heliophysics Applications Enabling and Enabled by Human Exploration of the Lunar Surface
February 17, 2022

Detailed information about the agenda is available by viewing the online program. Presenters will receive further information via email from the program committee regarding presentation guidelines and logistics. Presenters should also review their names in the program and, if updates are needed, email them to meetinginfo@hou.usra.edu.

This Heliophysics-focused Lunar Surface Science Workshop aims to address aspects of Heliophysics science that enable or are enabled by human presence on the lunar surface. Abstracts were solicited for both posters and oral presentations that address topics related to Heliophysics measurements that impact our understanding of and operations on the lunar surface environment. Contributions made during the session will be summarized in a short (5–7-page) report.

The session will be delivered using WebEx. Gather.town will be available for the poster sessions and throughout the session. Prior to the session, registrants will receive an email from Houston Meeting Info with virtual connection information for the session and Gather.town.

 

Virtual Session 13: Inclusive Lunar Exploration
January 26–27, 2022

Virtual Session 13 Presentation Recordings

Detailed information about the agenda is available by viewing the online program. Presenters will receive further information via email from the program committee regarding presentation guidelines and logistics. Presenters should also review their names in the program and, if updates are needed, email them to meetinginfo@hou.usra.edu.

The goal of this LSSW session is to begin an open dialogue about how to explore the Moon responsibly, ethically, and inclusively.

As the Artemis era begins, this is a time to intentionally make key decisions that will impact the lunar and planetary workforce and the future of exploration. Inclusion is one of NASA’s core values. This session will discuss best practices related to advancing inclusion and diversity in the lunar science and exploration community and initiate conversations about how to explore the Moon responsibly, ethically, and inclusively. One expected outcome of this session is a publicly available report of key findings and recommendations to NASA and the community, including best practices.

 

Virtual Session 12: Landing Sites and Capabilities for Future CLPS Deliveries
November 18, 2021

Virtual Session 12 Presentation Recordings

Detailed information about the agenda is available by viewing the program and abstracts. Session chairs and abstract authors: please review your name and, if updates are needed, email them to meetinginfo@hou.usra.edu.

The overall goal of this session is to build upon previously identified landing sites of high scientific value for near-term CLPS deliveries and identify new strategic targets. Science conducted at these sites should answer outstanding science questions as outlined in the Planetary Decadal Survey and key community documents (e.g., the Artemis III Science Definition Team Report, 2018 NASA Strategic Plan, the Scientific Context for the Exploration of the Moon, LEAG Advancing Science of the Moon Strategic Action Team Report, etc.).

 

Virtual Session 11: Lunar Science Accomplished with a Robotic Arm
Part 1: September 9, 2021
Part 2: September 30, 2021

Virtual Session 11 Presentation Recordings

As NASA enters the next phase of lunar exploration with enhanced capabilities, community input is required to help identify and prioritize relevant science that may be accomplished with a robotic arm. Several opportunities to outfit rovers and landers with arms are in the initial planning phases; e.g., the Lunar Terrain Vehicle (LTV), Commercial Lunar Payload Services (CLPS) landers/rovers/hoppers, and international contributions.

Thus, NASA is hosting a two-part LSSW session on September 9 and September 30, 2021, outlining these opportunities, providing relevant background and scope, and allowing for open dialog with the community.

Part 1, held on September 9, was a two-hour informational webinar with invited talks that covered overviews of the various platforms, potential science cases, and the schedule drivers. A call for abstracts occurred immediately after Part 1 requesting contributions from the community.

Time (EDT) Speakers Topic
1:00 p.m. Jake Bleacher, Debra Needham Workshop Overview and Goals
1:15 p.m. Jake Bleacher, Debra Needham Overview of Mobility Opportunities
1:30 p.m. Ryan McCormick (or designee) COLDArm: A Lunar Robotic Arm Concept
1:45 p.m. Sean Dougherty Robotic Arms on Mars: Lessons Learned from SAMPLR and MER
2:00 p.m. Aileen Yingst Science Achieved Using Robotic Arms: Lessons Learned from Mars
2:15 p.m. Debra Needham, Shaun Azimi Preview of 9/30 Workshop: Template Introduction and Request
2:30 p.m. Debra Needham, Shaun Azimi Q&A
3:00 p.m.   Adjourn


Information from the lunar science community is requested to provide input into design considerations for robotic arms on mobile platforms. Refer to the Call for Abstracts and Community Input tab for details and the template.

Part 2, scheduled for September 30, will feature a high-level summary of contributed inputs from the community followed by open discussion periods between NASA and the broader community including science, commercial entities, and international partners.

Time (EDT) Topic
12:00 p.m. Plenary — Introduction to Part 2: Summary of Community Inputs
12:15 p.m. Breakout 1: Surface Analysis
12:15 p.m. Breakout 2: Sample Acquisition
12:15 p.m. Breakout 3: Instrument Deployment
1:45 p.m. Final Plenary — 10-minute Summary for each Breakout Session
2:15 p.m. Final Discussion and Closing Remarks
3:00 p.m. Adjourn


The overall goal of the session is to generate a document that identifies and prioritizes science that may be done with robotic arms and can aid in the drafting of requirements, prioritizing robotic arm capabilities/instruments, and in outlining concepts of operations (conops).

 

Virtual Session 10: Fundamental and Applied Lunar Surface Research in Physical Sciences
August 18–19, 2021

The NASA Biological and Physical Sciences Division hosted a workshop on fundamental and applied research on the Moon in physical sciences on August 18–19, 2021. This workshop brought together the scientific community, commercial companies, and NASA Divisions and Programs with the goals of discussing investigations on reduced gravity and lunar environmental effects in physical sciences research for sustained lunar human habitation and in preparation for human exploration to Mars and to inform and inspire the science community to contribute white papers for the Biological and Physical Sciences Decadal Survey.

This workshop focused on:

  • Lunar dust and its properties, behavior, and mitigation
  • Life support and thermal management
  • Materials flammability and habitat fire safety
  • Extraction of water-ice from regolith research, including separation, purification, electrolysis, and liquefaction
  • Lunar environment and its effects on materials
  • Lunar research in extraction, processing, and handling
  • Lunar research for advanced manufacturing
  • Fundamental physics research on the lunar surface


Downloadable Program
Virtual Session 10 Presentation Recordings

 

Virtual Session 9: Progress and Challenges: Updates from NASA HQ and Artemis
April 29, 2021
11:00 a.m.–5:10 p.m. Eastern Daylight Time (EDT)

This LSSW session focused on communicating updates from NASA HQ and elements across Artemis. NASA HQ updates included leaders across all three mission directorates, the Agency, and elements within each mission directorate that have relevance to accomplishing lunar surface science objectives. Additionally, we heard updates from several teams across the Agency preparing hardware, operations, and training concepts to support Artemis.

Downloadable Program
Virtual Session 9 Presentation Recordings

 

Virtual Session 8: February 24–25, 2021
11:00 a.m.–4:50 p.m. EST
Structuring Real-Time Science Support of Artemis Crewed Operations

When astronauts walked on the Moon during the Apollo program, scientists were embedded in the Flight Control Team (FCT). These scientists populated a science backroom, and they were responsible for helping direct science activities, including sampling, instrument deployment, and other exploration tasks. In this way, the science backroom was critical in maximizing the productivity of the Apollo missions. Part of the reason for their success was that the scientists were able to work closely with the flight controllers, astronauts, and other critical members of the Apollo Program before, during, and after the missions. In the same way, scientists will work with Artemis Program flight controllers, flight directors, astronauts, and spaceflight engineers to achieve mission success and maximize scientific productivity by ensuring that the Artemis lunar surface missions effectively and efficiently accomplish high-priority science objectives.

Program and Abstracts
Downloadable Program
Virtual Session 8 Presentation Recordings

Breakout Discussions

February 24, 2021
3:50 p.m. EST

Breakout #1: Historical Lessons Learned for Pre-Mission Activities
Chair: Jose Hurtado
Facilitator: Ferrous Ward
Leading Questions:

  • What traverse-planning strategies for robotic missions with time-delay are amenable to human exploration with increasing amounts of crew autonomy?
  • What traverse-planning strategies for Apollo worked best?
  • What lessons learned can we leverage from Apollo on ideal training activities/strategies for the crew and science team?
  • What are the best ways to integrate engineering, mission operations, and science in the runup to the mission?


Breakout #2: Historical Lessons Learned for Mission Activities

Chair: Kelsey Young
Facilitator: Amanda Ostwald
Leading Questions:

  • What worked well and what can be improved from the design and function of the Apollo Science Support Team structure during the Apollo missions?
  • What lessons learned can we leverage from Mars rover exploration?
  • What can we leverage into Artemis from how ISS operations work today?


February 25, 2021
3:35 p.m. EST

Breakout #1: Infrastructure
Chair: Jose Hurtado
Facilitator: Marie Henderson
Leading Questions:

  • What sort of physical space is required to support the Backroom/Science Operations Center during Artemis missions? Where should this be in relationship to other mission support?
  • What are the computing resources, including software and visualization tools, that the Backroom/Science Operations team will need during Artemis missions?
  • What communications infrastructure, as well as other tools deployed on the lunar surface, will specifically enable the science team to do their work in supporting Artemis missions?


Breakout #2: Architecture
Chair: Kelsey Young
Facilitator: Tess Caswell
Leading Questions:

  • How should the Backroom/Science Operations Center be structured during Artemis lunar surface exploration (i.e. team structure, physical location, interfaces to support infrastructure, etc.)?
  • What should Roles and Responsibilities look like in the Artemis Science Team? What kind of positions should exist? How should the Science Team be selected and what backgrounds are needed?
  • What role will the ‘Science Operations Center’ play in real-time surface operations (crew autonomy versus the decisions the Science Team will want to feed input into)?
  • What is the role of strategic versus tactical science teams? What does the shift structure and staffing roster look like?
  •  

    Virtual Session 7: January 20–21, 2021
    Space Biology

    Program At-A-Glance
    Program with Presentation Descriptions and Authors
    5-minute pre-recorded poster presentations
    Downloadable Program
    Virtual Session 7 Presentation Recordings

    Separate LSSW-focused sessions will be held for space biology, physical sciences, and fundamental physics. The space biology session is scheduled for January 20–21, 2021.

    The NASA Science Mission Directorate Biological and Physical Science Division’s Space Biology virtual session will inform the community about lunar surface science programmatic and research activities at NASA and solicit input from the community on the potential for new scientific research that could be enabled by Commercial Lunar Payload Services (CLPS) and human exploration on the Moon and the technologies needed to conduct the research investigations.

    The first day will offer presentations by agency representatives and selected abstract submissions. The second day will consist of breakout sessions for deeper discussions and identification of specific lunar surface science topics and technologies for Biological and Physical Science Division (BPS) Space Biology lunar research activities, objectives, and priorities to provide community commentary on space biology lunar research.

     

    Virtual Session 6: November 19, 2020
    Foundational Data Products
    12:00–5:45 p.m. Eastern Standard Time (EST) (UTC -5)

    Downloadable Program
    Virtual Session 6 Presentation Recordings

    The next virtual workshop of the Lunar Surface Science Workshop (LSSW) will focus on Foundational Data Products. The day will be a mix of invited/contributed talks and discussion breakouts.

    This workshop will address foundational data products facilitating new scientific research enabled by human exploration of the lunar south pole. The goal of this session is to discuss existing relevant data and to identify key gaps in existing data that could be addressed through precursor missions and/or targeted new observations and analyses. The workshop will consider data products relevant to (a) direct scientific investigation and (b) surface characterization enabling safe, effective crew activity.

    Two breakout sessions will be conducted:

    • 1. Surface Characterization. Major themes to be addressed:
      • a. Assessment of local geology and composition, guiding and providing context for scientific investigations at the lunar south pole.
      • b. Assessment of local terrain enabling safe, successful exploration.
    • 2. Resource Characterization. Major themes to be addressed include the distribution and mobility of polar volatiles.

     

    Virtual Session 5: October 28, 2020
    Science Enabled by Mobility
    12:00–5:45 p.m. Eastern Daylight Time (EDT) (UTC -4)

    Downloadable Program
    View E-Posters
    Virtual Session 5 Presentation Recordings

    Major questions to be addressed:

    • Mobility: Drive it like you stole it.
      • What scientific investigations are uniquely enabled by mobility? Crewed or uncrewed?
      • What scientific investigations are enhanced by mobility? Crewed or uncrewed?
      • What are the necessary capabilities of the mobile platform (range, survive the night, communications, sampling, remote operations, etc.)?

     

    Virtual Session 4: September 30, 2020
    Planetary Protection/PSR Classification

    Downloadable Virtual Session 4 Program
    Virtual Session 4 Presentation Recordings

    Major questions to be addressed:

    • PP/PSR: Not all PSRs are created equal.
      • What are the major distinctions among PSRs?
      • How do we identify and classify different PSRs (e.g., keep-out zones vs. robotic/crew exploration targets vs. impact targets)?
      • What other locations (or portions therein) need to be classified? (e.g., heritage sites [A11–17, Luna, Surveyor, Chang’E]; past impact sites [LCROSS, S-IVB, Apollo ascent stages, LADEE, etc.]; current missions [NASA, commercial, international]; future infrastructure sites [crewed landings, solar farms, sustainable base]).
      • How do we set policy to govern PSRs and other sensitive/strategic sites within our own agency, the commercial sector, and internationally?

     

    Virtual Session 3: August 20, 2020
    Lunar Dust and Regolith

    Downloadable Virtual Session 3 Program
    Virtual Session 3 Presentation Recordings

    Virtual Session 2: July 29–30, 2020
    Lunar Volatiles and Samples
    NCTS #42295-20

    Downloadable Virtual Session 2 Program
    Virtual Session 2 Presentation Recordings

    Virtual Session 1: May 28–29, 2020
    Overview and Tools and Instruments

    Downloadable Virtual Session 1 Program
    Virtual Session 1 Presentation Recordings

    Use these links to access the program and abstracts and author index for the originally scheduled in-person workshop on April 28–30, 2020.

Original Workshop Concept

NASA was organizing a workshop to discuss new scientific research that could be enabled by human exploration near the lunar south pole.

NASA's Science Mission Directorate, Human Exploration and Operations Mission Directorate, and Space Technology Mission Directorate were co-sponsoring a three-day workshop to actively engage the scientific community in order to determine what science could be done by human crews on the lunar surface and how it can be achieved. This workshop was to be held April 28–30, 2020 at the Westin Denver International Airport. Attendance was open only to speakers, or their delegates, and selected invitees. Only one attendee per abstract was permitted. Portions of the workshop were to be streamed live for those who could not attend in person.

Revised Workshop Plan

Purpose and Scope

In accordance with the Space Policy Directive-1, NASA is planning a human return to the Moon’s surface by 2024 as a large next step in human exploration of the solar system. The NASA Artemis program is being conducted in two phases:  Phase 1 will see the next human beings set foot on the lunar surface near the Moon's south pole, and Phase 2 will create a sustained human presence on the lunar surface by 2028. Community input and early integration of science into the exploration architecture are essential to maximizing the science return from the Artemis missions.

Initial strategies for science payload delivery include using the Artemis 2024 lander, as well as pre-deployment of tools and experiments through Commercial Lunar Payloads Services (CLPS) deliveries. Astronauts could then deploy/operate/utilize these tools and experiments once on the surface. It is expected that some science investigations may require the attention of a crew to deploy/conduct experiments, while other investigations may simply use the Artemis architecture as infrastructure to supply power, communications, etc. to otherwise autonomous systems.


Code of Conduct

USRA/LPI is committed to providing a harassment-free experience for everyone regardless of gender, gender identity and expression, sexual orientation, disability, physical appearance, body size, age, race, religion, or other protected status. We do not tolerate harassment of meeting participants in any form. USRA/LPI expects that all participants will abide by this Code of Conduct, creating an environment free from harassment, discrimination, disruption, incivility, or violence of any kind. We expect participants to exercise consideration and respect in their speech and actions and refrain from demeaning, discriminatory, or harassing behavior. Report issues, concerns, or violations of this Code of Conduct directly to USRA/LPI management at USRA-LPI Meetings Code of Conduct. The full USRA/LPI Code of Conduct can be found here.

Note: All electronic submission forms are part of the Meeting Portal, which requires users to set up a personal profile to access our electronic forms (setting up a profile is quick and easy, requiring only a few minutes of your time).