Lunar Surface Science Workshop 17: Defining a Coordinated Lunar Resource Evaluation Campaign

July 11, 2022


Time Zone


Times listed are Eastern Daylight Time (EDT).

Find your local time here.


Monday, July 11, 2022

10:00 a.m. Defining a Coordinated Lunar Resource Evaluation Campaign

11:10 a.m. Theme 1: The Link Between Science and Resource Evaluation

11:30 a.m. Theme 2: Measurements Needed for Resource Evaluation

12:00 p.m. Theme 3: Techniques for Resource Evaluation with a Focus on Relevance to Potential Inclusion into a Resource Evaluation Campaign

12:40 p.m. Poster Session in Gather.Town

1:20 p.m.   Breakout Sessions

2:00 p.m.   Plenary Summary Report/Conclusion/Recommendations


Print Only


Monday, June 27, 2022


10:00 a.m.


Authors (*Presenter)

Abstract Title and Summary

10:00 a.m.

Neal C. R. *

Introduction: Goals of the Workshop and Next Steps

10:08 a.m.

Fagan A. L. *  Hurley D. M.  Hurtado J. M.  Lawrence S. J.

LEAG Community Support for Lunar Resource Evaluation and Utilization [#5034]
The United States Exploration Roadmap and several Specific Action Team reports of the Lunar Exploration Analysis Group (LEAG) show community consensus that identifying, characterizing, and utilizing lunar resources are critical for exploration plans.

10:16 a.m.

Petro N. E. *  Stickle A. M.

The Past is the Present and the Key to the Future: Lunar Reconnaissance Orbiter Observations Over the Past 13 Years and Plans for the Next 3 Years Relevant to Lunar Resource Evaluation [#5030]
Launched in June 2009, LRO was sent to the Moon with a goal of providing a “Polar region resources assessment”. LRO has generated a wealth of data on the lunar volatiles environment and what future explorers may encounter on the lunar surface.

10:24 a.m.

Sowers G. F. *

The Lunar Polar Prospecting Workshop, 2018 [#5018]
The Lunar Polar Prospecting Workshop was conducted June 2018 in Golden Colorado. The workshop developed a roadmap for a resource exploration campaign focused on ice deposits at the lunar poles.

10:32 a.m.

Neal C. R. *  Hibbits C. A.  Colaprete A.  Abbud-Madrid A.  Carpenter J.

Defining a Coordinated Lunar Resource Evaluation Campaign [#5025]
A lunar resource evaluation campaign requires targeted orbital/landed missions guided by the current orbital datasets.

10:40 a.m.

Keszthelyi L. P. *  Gabriel T. S.  Ostrach L. R.  Bennett K. A.  Coyan J. A.

Data Needed to Support Quantitative Lunar Resource Assessments [#5014]
The methods used by the United States Geological Survey to assess energy and mineral resources on Earth provide a framework for quantitative lunar resource assessments. Here we consider what new information is needed to complete such assessments.

10:48 a.m.

Drake S. *

Lunar Resources Registry — Promoting Resources Registrations to Terrestrial Industries [#5023]
Lunar resources registry creates registrations for resources, infrastructure and energy locations that meet the exploration requirements of mining, energy, and new space resources companies.

10:56 a.m.






Monday, June 27, 2022


11:10 a.m.


Authors (*Presenter)

Abstract Title and Summary

11:10 a.m.

Ennico-Smith K. *  Keszthelyi L.  Beyer R. A.  Colaprete A.  Coyan J. A.  Fassett C. I.  Heldmann J. H.  Kleinhenz J.

Lunar Resources Catalog (LRC) [#5009]
VIPER team to provide a dataset and help establish a Lunar Resources Catalog as part of integrating lunar ISRU data into the broader Planetary Data Ecosystem.

11:14 a.m.

Cannon K. M. *

Addressing the First Order Question: Do We Have a Bonanza or Not? [#5002]
Before planning a detailed resource evaluation campaign, a first order question exists as to whether lunar ice exists as a bonanza (high overall amounts, high grades, widely distributed), or not. This should be a first priority for upcoming missions.

11:18 a.m.

Hurley D. M. *

Depth Distribution of Water Ice in Lunar Permanent Shadow [#5016]
A look at the expectations for the depth distribution of water ice on the Moon and what is currently known about the depth distribution.

11:22 a.m.

Smolka A. *  Reiss P.

Multi-Element Lunar Exosphere Simulation to Improve the Prediction of Ballistic Migration of Water [#5003]
The new numerical model of the lunar exosphere can perform multi-element simulations based on reaction rates in the exosphere and the surface. Its predictions show that single-element models cannot describe relevant features of the lunar water cycle.

11:23 a.m.

Agrawal P. *  Norman G. K.  Lopez-Francis I.  Zuniga A. F.  Mackintosh G.

Lunar Science Investigations and Exploration in Celestial Mapping System [#5007]
Celestial Mapping System, is used for creation and visualization of high-resolution maps of a Permanently Shadowed Region near Nobile crater, site for Viper mission. Visibility maps leading to traverse path optimization inside the PSR are created.

11:24 a.m.

Easter P. *  Lambert C.  Long-Fox J.  Britt D.

Specific Gravity of Exolith Lab Lunar Regolith Simulants [#5013]
Characterizing the specific gravity, void ratio, and porosity of Exolith Lab’s lunar regolith simulant for use in the development of lunar ice detection and extraction methodologies.

11:25 a.m.

Barnett N. *  Warren T.  Oh J.  Dempster A.  Saydam S.

Insulative Effect of Regolith on Lunar Subsurface Temperatures [#5019]
The modelling analysis has determined that sub-surface cold traps could exist in regions with surface temperatures greater than 110K.




Monday, July 11, 2022


11:30 a.m.


Authors (*Presenter)

Abstract Title and Summary

11:30 a.m.

Li S. *

Water Anomalies on the Moon for Science Explorations and In Situ Resource Utilization (ISRU) [#5010]
This abstract overviews all water anomalies including water ice on the lunar surface that show scientific significances and ISRU potentials for future explorations.

11:34 a.m.

Hayne P. O. *  Osterman D. P.  Donaldson Hanna K. L.  Paige D. A.  Greenhagen B. T.  Siegler M. A.  Landis M. E.  Wilcoski A. X.  Lucey P. G.  Williams J-P.  Rubanenko L.  Schorghofer N.  Aharonson O.  Dissly R.

Thermal Infrared Measurements as Part of a Coordinated Lunar Resource Campaign [#5029]
Thermal infrared measurements are critical to assessing the lunar resource potential.

11:38 a.m.

Shannon J. *  Hibbitts C.  Runyon K.  Nord M.  Berdis J.

Prospecting Lunar Polar Ice from Low-Altitude Orbits [#5015]
This work explores the stability of low-altitude Lunar polar orbits and develops a ConOps for low-altitude surface observations and terrain avoidance. Perilune altitudes less than 5 km are achievable and can enhance hydrogen map resolutions.

11:42 a.m.

Colaprete A. *  Elphic R. C.  Shirley M.

Characterizing Lunar Polar Volatiles at the Working Scale: Measurement Requirements and Demonstration [#5026]
We use a combination of Monte Carlo studies and classic geostatistical approaches to go from the exploration goal of “understand the distribution of water” to quantification of specific mission sampling requirements.

11:46 a.m.

Neal C. R. *  Abbud-Madrid A.

Data Fidelity Requirements for Defining Reserve Potential During a Coordinated Lunar Resource Evaluation Campaign [#5042]
Precision of polar volatile compositional data will impact the fidelity of business models that can be created from resource evaluation missions. This presentation evaluates data fidelity from a revenue perspective.

11:50 a.m.

Salmeri A. *  Schingler J. K.

Coordinating a Coordinated Campaign: The Sociopolitical Aspects of a Lunar Resource Campaign [#5004]
The organization of a coordinated lunar resource evaluation campaign would be an effort of unprecedented scale in the history of the space sector. This abstract seeks to cultivate reflections on the coordination aspects of the campaign.

11:54 a.m.

Eubanks T. M. *  Blase W. P.  Lingam M.  Hein A.  Gerhardt R.

A Coordinated Lunar Resource Campaign for Subterranean Lunar Water [#5039]
The Moon has a cooler crust over a warmer mantle, and so any ice layers are likely to have underground liquid water in the warmer rock beneath. As ice can be stable underground, ice — and liquid water — may be found outside the lunar polar regions.

11:55 a.m.

Shoemaker E. S. *  Baker D. M. H.  Richardson J. A.  Carter L. M.  Young K. E.  Whelley P. L.  Schmerr N.  Wike L.  Coonan J.  Kruse S.

Ground-Penetrating Radar as a Tool for Prospecting Buried Lunar Ice [#5045]
Ground-penetrating radar is an important tool to map the extent and thickness of lunar ice deposits.

11:56 a.m.

Patrick E. L. *

Lessons from Apollo for Volatile Detection and Mass Spectrometry in the Age of ISRU [#5017]
Apollo data relevant to volatile detection are reviewed and placed into the context of ISRU. We also update the status of our NASA DALI project, “Environmental Analysis of the Bounded Lunar Exosphere” (ENABLE) - a mass spectrometer for ISRU.

11:57 a.m.

Sargeant H. M. *  Š?umba K.  Long-Fox J.  Easter P.  Britt D.

In Situ Measurements of Permanently Shadowed Regions Needed to Develop Icy Simulants [#5012]
Accurate simulants are needed to test rovers, drills, and excavators in preparation for mission operations. Here, we highlight some of the key in situ measurements still required to develop appropriate icy simulants for the ISRU and scientific community.




Monday, July 11, 2022


12:00 p.m.


Authors (*Presenter)

Abstract Title and Summary

12:00 p.m.

Withee S. *  LSIC PNT subgroup participants

Factors Affecting Robotic Mapping of Ice Resources in Permanently Shadowed Regions [#5005]
Robotic prospecting for ice resources in permanently shadowed regions (PSRs) will require multiple mobility types, increased autonomy, development of new navigation and mapping technologies, and new approaches to mission operations.

12:04 p.m.

Zacny K. *  Palmowski J.  Bywaters K.  Stolov L.  Colaprete A.  Elphic R.

REBELS: Rapidly Excavated Borehole for Exploring Lunar Subsurface [#5011]
REBELS is a 10 m drilling system with downhole instruments.

12:08 p.m.

Trolley Z. *  Loney K.  Mitra S.

EnkiGIS — Accelerating the Study of Extraterrestrial Geology and Resource Development [#5022]
We are developing EnkiGIS, a comprehensive, searchable metadata index of multiple planetary science archives. Available as a REST API, a python library, and command-line tool, it provides access to multiple archives simultaneously.

12:12 p.m.

Cohen B. A. *  Hayne P. O.  Greenhagen B. T.  Paige D. A.  Ready W. J.  Lightsey G.  Adell P.  Baker J. D.

Lunar Flashlight: Mapping Accessible Water Frost [#5037]
The Lunar Flashlight mission, scheduled for launch in late 2022, will measure exposed water ice frost and map its occurrence in the Moon’s south polar region.

12:16 p.m.

Ehlmann B. L. *  Klima R. L.

Lunar Trailblazer: A Pioneering Smallsat for Mapping Lunar Water and Lunar Geology and a Key Component for Lunar Resource Evaluation Campaigns [#5040]
Targeted orbital data from Lunar Trailblazer will provide state-of-the-art mapping of the lunar surface for water and mineralogy at <100 m/pixel to determine the form, distribution, and abundance of water ice and surface composition.

12:20 p.m.

Sowers G. F. *  Dreyer C.  Purrington C.

Veritas, a Ground Truth Mission into a Deep Lunar PSR [#5021]
Veritas, (Volatile Exploration and Resource Identification via Testing, Analysis and Sensing) is a concept for a ground truth mission into a deep lunar PSR (permanently shadowed region).

12:21 p.m.

Kroupa M. K. *

Advanced, Low-Cost, Modular, Scalable, Space-Temporal Agnostic, Continuous Power Generation for Mobility and Derivative Apps [Universal Power Supply - UPS] [#5024]
NFTG solves the energy challenge in a simple, scalable, readily deployable, application agnostic, infrastructure independent, ultra-efficient power system that is space environment resistant & agnostic by leveraging current technologies and physics.

12:22 p.m.

Inggs M R. *  Gema K.

The Lunar Explorer Satellite Mission [#5028]
A satellite with combined high resolution radar/hyperspectral sensors to map the moon at high resolution.

12:23 p.m.

Shahi C. B.  Coplan M. A.  Su J. J.  Lutz L. F.  Clark C. W. *

Compact, Low-Voltage Neutron Detector for Volatile Discovery [#5033]
We describe a new-technology neutron detector that could be used to discover hydrogen volatiles either in rover drive-by mode or by remote viewing e.g. of permanently shadowed regions of a crater.

12:24 p.m.

Purrington C. *  Dreyer C.  Abel P.

Lunar Water Prospecting Using a Thermal Probe [#5035]
Thermal properties of icy regolith change as a function of wt%. It’s possible to leverage these thermal properties and detect them using a thermal probe. This study presents thermal experiments that prove prospecting is possible with thermal data.

12:25 p.m.

Thrift B. C. *  Dreyer C. B.

Utilizing the Specialized Penetrometer for Ice Detection [#5036]
Penetrometers are resource prospecting tools. In general, only the penetration response is evaluated, but the response after motion stops can also reveal information. The relaxation response is sensitive to various parameters including ice content.

12:26 p.m.

Paige C. *  Ward F.  Haddad D. D.  Todd J.  Newman D.

Assessing Virtual Reality for Remote Lunar Geological Fieldwork [#5038]
As part of MIT’s RESOURCE project we will be testing both the scientific and operational usefulness of a virtual reality platform for local, small-scale (<5 cm) geological analysis for ISRU rover missions.

12:27 p.m.

Parsons A. M.  Ayllon Unzueta M.  *

Using BECA to Map the Subsurface Composition at the Lunar Poles [#5044]
BECA measures the in situ lunar bulk elemental composition without the need to make physical contact with the surface and should be considered for use in characterizing the ice deposits and other resources available at the lunar poles.

12:28 p.m.

Braun A. *  Carroll K. A.  Saadia B.  Bringeland S.

Towards a Modelling Framework for Lunar Surface Geophysics [#5031]
Lunar surface exploration requires geophysical surveys deployed by rovers of astronauts. Those surveys require more sophisticated planning through forward and inverse modelling of a variety of relevant instrument, target and uncertainty parameters.

12:29 p.m.


Transition to Gather.Town/Break


Monday, July 11, 2022


12:40 p.m.  




Monday, July 11, 2022


1:20 p.m.


Authors (*Presenter)

Abstract Title and Summary

1:20 p.m.

Breakout 1

How to Leverage Current ‘Science’ Information, Database, and Mapping Tools to Generate Resource-Driven Data Products

1:20 p.m.

Breakout 2

Measurements Needed for ISRU Resource Identification and Implementation, Including Measurement Types and Characteristics (Resolution, Coverage, etc.)

1:20 p.m.

Breakout 3

Specific Methods, Tools, and Mission Approaches to Accomplish Resources Evaluation Objectives


Monday, July 11, 2022


1:40 p.m.


Authors (*Presenter)

Abstract Title and Summary

2:00 p.m.


Reassemble for Plenary Summary Report/Conclusion/Recommendations

2:20 p.m.



2:25 p.m.







Authors (*Denotes Presenter)

Abstract Title and Summary

Barker D. C.

The Why and How of Human Off Earth Resource Development [#5032]
For almost all human history, there has been a preexisting demand for almost any resource being produced. We now have to create that sustainable destination and assure it has the needed resources available to be efficiently extracted and used.

Bland P. A.  Binar Prospector Team

Binar Prospector: An Australian Lunar Resource Prospecting Mission [#5046]
Binar Prospector is an Australian lunar resource prospecting mission. A pair of 12U spacecraft will gather magnetometry and thermal imaging data at extremely low altitudes to identify localised ice deposits and mineralization.

Coyan J. A.  Keszthelyi L. P.

Demonstration of Mineral Predictive Mapping on the Lunar Surface [#5041]
Without rich datasets to serve as training data for data-driven approaches such as neural networks for mapping, due to the lack of direct measurement, it is necessary to turn to knowledge-driven, data-analytical techniques such as Fuzzy-Set Theory.

Lovseth J. N.  Kereszturi A.

Comparison of Geotechnical Parameters on the Moon and Mars [#5001]
Comparing measured geotechnical parameters on Moon with those on Mars, support to understand the physical background of regolith behaviour. However for successful results further data unification and improvement of the measured technology are needed.