Reaction Temperature and Pressure Constraints on Hydrogen Reduction of Ilmenite for ProSPA.

H. M. Sargeant, F. Abernethy, M. Anand, S. J. Barber, S. Sheridan, I. Wright and A. Morse.
Research Aims & Methods

• Demonstrate water production from lunar minerals

\[FeTiO_3 + H_2 \rightleftharpoons Fe + TiO_2 + H_2O \]

Ilmenite + Hydrogen ⇌ Iron + Rutile + Water

• Optimize the reduction reaction procedure

• Perform reduction of lunar simulants and samples
Results

Higher temperatures give higher yields (focused on 1000°C)

Fig 1. Reaction rates for different H₂ pressures

![Graph showing reaction rates for different H₂ pressures](attachment:image.png)

Table 1. Yields from different sample types

<table>
<thead>
<tr>
<th>Sample</th>
<th>Water production total (ml)</th>
<th>Yield (wt. % O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilmenite</td>
<td>1.72</td>
<td>3.40</td>
</tr>
<tr>
<td>NU-LHT-2M</td>
<td>0.14</td>
<td>0.29</td>
</tr>
<tr>
<td>NWA12592</td>
<td>0.03</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Fig 3. Evidence of reduction in a.) Ilmenite, b.) plagioclase, and c.) pyroxene in the NU-LHT-2M reacted sample.
• Higher temp = more yield

• H_2 pressure ‘goldilocks zone’ in static system

• Highland simulants can reduce (likely to work on lunar highlands)

• Lunar meteorites give low yields (grain size? Impact melt?)

• Next steps, Apollo samples!

Fig 1. Effect of H_2 pressure on reaction process.