LUNARSABER: Lunar Utility with Navigation, Advanced Remote Sensing, and Autonomous Beaming for Energy Redistribution. Vishnu Sanigepalli¹, Kris Zacny¹, Richard Marguilleux¹, Zachary Begland¹, Kayla Klein¹, Lily Clay¹, Kevin Hubbard¹, Grayson Glazer¹, Dean Bergman¹. Honeybee Robotics (2408 Lincoln Ave Altadena, CA 91001, vxsanigepalli@honeybeerobotics.com, kzacny@honeybeerobotics.com)

Introduction: LUNARSABER, Lunar Utility with Navigation with Advanced Remote Sensing and Autonomous Beaming for Energy Redistribution, is a tall deployable structure that integrates energy harvest and storage, communications, mesh network, PNT (Position, Navigation, and Timing), power transfer, and surveillance into a single infrastructure that can be scaled to provide commercial services to both public and private aerospace sectors. The architecture can seamlessly integrate into future lunar architectures with its ability to scale by size to fit the volume and mass constraints of the landing systems (i.e., single large scale LUNARSABER vs. multiple small LUNARSABERs on a single launch).

Configurations: There are two different scaling opportunities for LUNARSABER’s architecture: form factor and production. As the deployment system increases in diameter and height, the power generation scales linearly. These two parameters (diameter/height) can be adjusted based on customer/mission requirements such as: power requirement, launch up-mass and down-mass, volume capability, and so on. LUNARSABER, shown in Fig 1, can also be customized for different needs: “fully loaded” LUNARSABER can be strategically positioned near crater rims, while LUNARSABER for PSRs can be deployed without solar panels and only be used for power transfer, PNT, communications, and asset monitoring.

Illumination: The system sees an increase in performance after scaling the height. For Shackleton crater, when the deployed length exceeds 100 m, the square area of land with continuous illumination increases, and the periods in darkness drastically decrease (Fig 2). Most of the crater rim is illuminated for >80% of a lunar precession cycle, with some locations >95% (~18.6 years) [1][2]. If deployed at these locations, LUNARSABER would provide near continuous power for operations and lunar night survival capabilities. Although the power generation wouldn’t be at full capacity as it would only illuminate the top of the solar panel assembly it would allow for a power redundancy for self-survival and the capacity to beam power to other assets. For the short periods in darkness, the batteries in the base of the system are sized appropriately to survive and provide power to other lunar assets. Since the illumination of these regions are deterministic and well-studied, mission architectures can be optimized to re-charge and store energy prior to these events.

Fig. 1 LUNARSABER subsystem overview

Fig. 2 Comparing the average percent illumination near Shackleton crater from January 2020 to January 2040 for a height of 10 m and 100 m. Image credit: Ross et al. (2021) [2]
Lunar Services: Through strategic site selection and multi-deployments, LUNARSABER can generate critical operational power needs required for surviving lunar nights. Due to its height, it has capability to generate power on average of 94% of the time including lunar nights throughout a 20-year lunar precession cycle. To transfer power to other lunar assets, it uses a 2-axis precision gimbaled photonic laser emitter at top of the structure (100+ m tall) to photovoltaic array receivers mount on various lunar assets. This allow for long-range power transmission between assets without the need for heavy harnessing that needs to be routed in-between multiple systems. With its compact and localized PNT system, it can provide position state data for landers, rovers, and astronauts for navigation during critical extravehicular activities.

Due to the limited view factors inside craters and PSRs, LUNARSABER provides continuous PNT services that traditional satellite-based architectures struggle to provide. The 360 FOV cameras and the actuated broad-beam lighting system allows critical asset monitoring to help Earth and Lunar Mission Control to oversee autonomous robotic systems and extravehicular activities.

As the number of deployments scale and are strategically placed, LUNARSABER communications systems evolves into a mesh communication network that allows any lunar asset to communicate with another without line-of-sight. A gimbaled communication antenna at the top of the structure also provides Direct-To-Earth (DTE) communications with Space Network (SN) or Deep Space Network (DSN) with higher % visibility based on the deployed location. This communication services can be extended with data storage capability and lunar network services at the base of each system to serve as a decentralized network to store, transmit, and provide mission data as required.

LUNARSABER focuses on providing multiple services, which help reduce the overall costs while maximizing the services rendered per mission. This solution focuses on providing essential infrastructure-as-a-service needed for lunar missions such as energy, comms, position knowledge, etc. In-situ services demand will be one of the primary driver to achieve economies of scale. As deployments of LUNARSABER scale, the mesh network becomes efficient and seamlessly integrate with satellites communications, Deep Space Network, and Earth and Lunar mission controls.

References: