Program with Links to Abstracts

Schedule Overview  
Times are listed in the US/Central time zone. Add Time Zone

Poster Session: Lunar Regolith, Dust, and Plasma

Thursday, March 16, 2023, 6:30 PM
Town Hall Exhibit Area

Kirchoff M. R.* Marchi S.
Regolith Layer Depths at Apollo Landing Sites and Effects on Crater SFDs [#2293]
Use unusual morphology craters to assess plausible layer depths at several Apollo sites and effects on crater SFDs and absolute model production function ages.
Thaker A. D.* Neish C. D.
Regolith Depth Estimations Around Radar-Dark Halo Craters on the Moon [#1117]
Our study focuses on regolith depth estimations for radar-dark halo craters on the Moon using specific small crater morphology to understand their mechanism.
Long-Fox J.* Mueller R. Bell E. Dudzinski K. Peacock B. et al.
COLDArm Pressure-Sinkage Testing: Implications for Assessing Lunar Trafficability [#2165]
On-site testing of regolith properties using standard exploration hardware will provide different insights than analyses based on remote sensing data.
Anderson R. C.* Chin K. Chi I. Wei T.
Development of a New Lunar Simulant for Geotechnical Applications [#1854]
There is an important need for detailed characterization of lunar regolith physical properties critical for future missions involving surface contact.
Martin A. C.* Stockstill-Cahill K. R. Wagoner C. M. Kovtun R. N. Gruener J. E.
Lunar Surface Innovation Initiative: Geotechnical Evaluation of Lunar Regolith Simulants [#2695]
This year’s assessment focused on geotechnical measurements of the eight lunar simulants: size fractions, minimum and maximum density, specific gravity, and shear strength.
Lucas M. P.* Neal C. R. Long-Fox J. Conway J. Glover A. et al.
Lunar Locomotion: Geotechnical Assessment of Trafficability On Regolith (GATOR) [#2463]
A new dance — lunar locomotion — will keep on rollin’ in GATOR, a project to measure the effect of repeated traffic on the geomechanical properties of lunar regolith.
Lorenzo J. M.* Zanetti M. R. Bremner P. M. Patterson D. A. Tsoflias G. et al.
Lunar Regolith Terrain Field at NASA Marshall Space Flight Center [#1520]
The Lunar Regolith Terrain (LRT) field is an outdoor planetary analog environment facility located onbase at Marshall Space Flight Center, Huntsville, Alabama, U.S.A.
Gruener J. E.* Rickman D. L. Wilson S. A. Edmunson J. E. Kleinhenz J. E. et al.
The Complete Series of NU-LHT Lunar Simulants [#2238]
This poster will describe all of the lunar highlands type simulants developed by NASA and USGS (NU-LHT) to support NASA’s Constellation and Artemis Programs.
Dotson B.* Sargeant H. Millwater C. Easter P. Sanchez Valencia D. et al.
New Insights into the Physical Properties of Regolith [#1406]
The effects of density, particle size distribution, and absorbed water on regolith shear strength and cohesion are discussed for plume-surface interaction tests.
Wyrick D. Y.* Anderson R. C. Buczkowski D. L. Chin K. Colaprete A. et al.
Geomechanical Characterization of Planetary Regolith Using the SPARTA Toolkit [#2421]
SPARTA is a miniature suite of instruments capable of measuring the mechanical, thermal, electrical, and chemical properties of dry and/or icy regolith.
Sargeant H. M.* Long-Fox J. Dyson J. Donaldson Hanna K. L. Britt D.
Developing the Simulator for Planetary Interactions of Dust and Regolith (SPIDR) [#1678]
Modeling Moon dust / Is harder than it first seemed / Keep calm, carry on. .
Lewis E. K.* Ghosh S. Jakubek R. S. Amick C. L. Stopar J. D. et al.
Examination of Lunar Regolith Simulants by SEM-EDS and Imaging Raman Spectroscopy [#2307]
The utilization of SEM-EDS and Raman microscopy upon simulated lunar regolith for analysis of elemental spectral mapping and particle size distribution characterization.
Kovtun R.* Walker S. Gruener J.
Quantitative Characterization of Lunar Regolith Simulants for Direct Comparison to Apollo Soil Samples [#1688]
The Simulant Development Lab (JSC) is characterizing simulant properties and producing Figures of Merit for comparison of lunar simulants to Apollo samples.
Kovtun R.* Gruener J.
3D Particle Geometry Characterization of Apollo Regolith Samples via Laser Diffraction and Dynamic Image Analysis [#1694]
Characterization of 3D particle geometry of lunar regolith samples with varying maturity levels and compositions creating a reference point for lunar simulants.
Fackrell L. E.* Simpson A. C. Palmer A. G. Singh N. K. Venkateswaran K. J.
Nanopore Sequencing for Characterizing the Microbial Communities in Regolith Simulant-Based Soil-Like-Substrates [#1566]
Characterization of regolith simulants and simulant-derived mediums endogenous and experimental microbiome with nanopore sequencing.
Roth M. C.* Roux V. G. Roux E. L.
Research and Development Applications of Lunar Regolith Simulants with Increased Magnetic Response [#2920]
Lunar regolith simulants with a range of magnetic responses are vital for understanding the effects of regolith on lunar technology and ISRU processes.
Whittington A. G.* Morrison A. A. Parsapoor A. Patridge A. M.
Thermal and Rheological Properties of Lunar Simulants from Ambient to Molten to Glass [#2811]
Lunar simulants / Enthalpy, viscosity / Mare and highlands.
Austen D. H.* Shafirovich E.
Specific Heats and Thermal Diffusivities of LHS-1 Lunar Regolith Simulant at Low Temperatures [#1204]
For the development of thermal methods for water extraction on the polar regions of the Moon, knowledge of thermophysical properties of icy regolith is crucial.
Zinecker A. A.* Spivey B. H.
Thermo-Optical Properties of Lunar Dust Simulants [#1294]
Thirteen lunar dust simulants’ IR emissivity and solar absorptivity were measured.
Boll D.* Suermann P.
Preliminary Materials Testing of Concrete Canvas for Use in Lunar Dust Mitigation Applications [#1173]
A lunar landing pad design was created from a flexible cementitious material used in Arctic conditions on Earth. Testing proved needed strength for Artemis use.
Orger N. C.* Toyoda K. Cho M.
Numerical Study of Electrostatic Dust Lofting Variation by Surface Parameters over the Lunar Terminator Region [#1999]
Even though the dust charging is mainly controlled by solar wind, the charge magnitude requirement for lofting is controlled by the regolith configuration.
Szabo P. S.* Poppe A. R. Biber H. Mutzke A. Pichler J. et al.
Constraints for the Lunar Regolith Porosity at the Surface from Solar Wind Proton Reflection [#1316]
Novel simulations of solar wind proton reflection from the Moon can only explain spacecraft observations with a regolith porosity at the surface of around 85%.
Choudhary R. K.* Tripathi K. R. Ambili K. M.
Characteristic Features of the Lunar Ionosphere Under Varying Solar Geophysical Conditions as Revealed by DFRS Onboard Chandrayaan-2 [#1939]
Experiments with DFRS onboard Chandrayaan-II show high electron density in the wake region of the Moon, followed by the solar terminator with a minimum at noon.
Sana T.* Mishra S. K.
Non-Monotonic Potential Structure Around Sunlit Moon [#1466]
Comments on non-monotonic potential structure within lunar photoelectron sheath using justified solar spectrum, SW flux, and adequate photoelectron distribution.
Roy S.* Tadepalli S. P. Dastidar R. G. Basak A. Mukherjee A. et al.
An MHD Modeling Approach to Understand the Dynamic Lunar Environment in the Geotail [#1885]
Non-neutral current sheets form around the Moon during geotail transits, accelerating electrons to high energies and leading to a dynamic lunar environment.