Program with Links to Abstracts

Schedule Overview  
Times are listed in the US/Central time zone. Add Time Zone

Poster Session: Lunar Volatiles

Thursday, March 16, 2023, 6:30 PM
Town Center Exhibit Hall

Barrett T. J.* Robinson K. L. Nagashima K. Huss G. R. Boyce J. W. et al.
Volatile Abundance of Paired Lunar Troctolites and the Early Lunar Crust [#2664]
We present a suite of volatile data for a pair of lunar troctolites to better ascertain the volatile abundance of the early lunar crust.
Thompson D. L.* Boyce J. W. Dudley J.-M. Barnes J. J. Wilbur Z. E.
Thermodynamic Modeling of the Vapor in Equilibrium with Apollo 17 Basalts [#2520]
We use thermodynamic software to model the equilibrium between Apollo 17 basalts and vapor to determine the plausibility of a vapor-phase deposition process.
Williams T. A.* Parman S. W. Saal A. E. Ogliore R. C. Iskakova M. et al.
Nanoanalysis of Sublimates on Pristine Lunar Orange Glass Beads [#1441]
Nanoanalysis of Apollo 17 orange glass beads resolves trace element and isotope variations in the surface condensates on a nanometer scale.
Varnam M.* Hamilton C. W. Barnes J. J. Aleinov I.
The Composition of Lunar Volcanic Volatile Outgassing During Mare Eruptions [#2516]
Oh Moon volcano / What gases did you eject? / Conclusions shadowed.
Schultz P. H.* Li S.
Origin of High and Low Water Signatures on the Moon [#2959]
Impacts appear to play an important role in delivering, removing, and perhaps recycling water on the Moon.
Aleinov I.* Way M. J. Head J. W. Varnam M. Tsigaridis K. et al.
Can Collapse of a Volcanically-Induced Lunar Atmosphere Deliver Volatiles to Permanently Shadowed Regions? [#1890]
Volcanically-induced CO2 atmosphere can collapse due to condensation in cold regions. This could provide a mechanism for targeted volatile delivery to PSRs.
Danque H. A.* Cannon K. M.
Potential Capture of Transient Atmosphere Volatiles in Subsurface Cold Traps [#1836]
Early transient atmospheres may have repeatedly deposited volatiles on regolith grains in the lunar polar subsurface under cold trapping conditions.
Smolka A.*
Modelling the Lunar Water Cycle Through Coupled Monte-Carlo Simulations of the Moon's Surface and Exosphere [#2089]
The work presents an overview of a coupled model for lunar H, H2, OH, and H2O concentrations in the Moon’s exosphere and surface.
Tucker O. J.* Farrell W. M.
Dynamics of Proton Implantation and the H2 Exosphere at the Moon: Variations in the Dayside OH Surface Concentration During Passage Through the Magnetotail [#3025]
We revisit the model calculations of H atom diffusion and the H2 exosphere during the Moon’s traversal of the magnetotail for comparisons to M3 data of the dayside OH content.
McLain J. L.* Keller J. W.
Secondary Ion Sputtering of Apollo Era Lunar Soils: Positive and Negative Ion Mass Spectra and Velocity Distributions [#2939]
We will report reflectron time-of-flight measurements of positive and negative ions sputtered from lunar samples.
Lucey P. G.* Sun L. Flom A. J. Chertok M. A. Zeigler R. A. et al.
Infrared Spectroscopy of Apollo 17 Core 73001: Implications for Lunar Surface Water [#1591]
Never exposed to terrestrial water, Apollo core 73001 does not feature a hydration band at three micrometers.
Li S.* Deutsch A. N. Szalay J. R.
A Possible Solar Wind Origin of Surface Exposed Water Ice in the Lunar Permanently Shaded Regions [#2537]
We analyze the distribution of surface water ice in lunar PSRs and find that solar wind may contribute water to PSR water ice.
Wilk K. A.* Mustard J. F. Milliken R. E. Pieters C. M.
Effect of Surface Adsorbed H2O/OH on Lunar Relevant Minerals at 3 and 6 Microns [#2316]
How does water move / When it is surface adsorbed / In the IR range.
Bishop J. L.*
Characterizing Variations in the 3-Micron Hydration Band in Lunar Analogs [#2894]
This lab study provides information on the wavelength position and shape of bands due to OH and H2O in silicate minerals and lunar analogs.
Taylor K. M.* Wilk K. A. Mustard J. F.
Exploration of Water in the 6 Micron Wavelength Region [#2661]
Increasing the feasibility of using the 6-µm region to spectrographically distinguish OH- and H2O signals by constraining H2O’s fundamental bending vibration.
Fisher E. A.* Lucey P. G. Sun L. .
Identifying the Spectral Signatures of Surface Adsorbed Water on Lunar Relevant Mafic Minerals [#3030]
We isolate the spectral signatures of internal vs. surface adsorbed water on mafic minerals by using Hapke radiative transfer modeling.
Kachmar V. V.* Sun A. J. Ehlmann B. L.
Modeling Water Ice on Planetary Surfaces of Silicate Bodies [#1398]
Our modeling framework aims to put constraints on water-ice scenarios on airless silicate bodies. The focus of our current research is Ceres and Moon.
Sun L.* Lucey P. G. Fisher E. A.
Polarized Infrared Bidirectional Spectroscopy: A New Tool for Characterizing Water in Planetary Materials [#1340]
We identified surface adsorbed water of CaF2 using polarized FTIR spectra and found a parameter that is sensitive to water content but not the grain size.
Blakley B. P.* Ehlmann B. L. Greenberger R. N. Kachmar V. V. Sosa E. S.
Laboratory Reflectance Study of Water-Ice-Regolith Mixtures for Modeling of Lunar Water Scenarios [#2578]
We created a regolith simulant with no water absorption features in IR spectra, and mixed the simulant with water ice for confirmation of lunar water models.
Lewis E. K.* Amick C. L. Harris C. L. Ghosh S. Turner A. A. et al.
Generating Cryogenic Lunar Simulants Within the Planetary Exploration and Astromaterials Research Laboratory (PEARL) [#1594]
Cryogenic lunar simulant materials for emulating samples that could be encountered in PSRs of the lunar surface.
Ghosh S.* Lewis E. K. Amick C. L. Harris C. L. Mantilla C. A. et al.
In-Lab Rapid Analytical Detection of Lunar Volatiles by Universal Gas Analyzer with Comparison to GC-MS System [#1596]
We discuss in-lab procedures and experimental results for rapid analysis of major lunar volatiles detected by the LCROSS mission by a Universal Gas Analyzer.
Slabic A.* Rollins J. M. Pomajevich S. R.
LIPA: Lunar Ice Perception Algorithm [#1705]
Infrared images of simulated lunar regolith were captured with two optical filters to enhance the contract between ice-bearing and non-ice-bearing zones.
Ando J. K.* Li S.
Detection and Modeling of Visible Albedo due to Surficial Ice at the Lunar South Pole [#1295]
Polar water-ice / Could be bright if there’s enough! / How much would that be?
Magaña L. O.* Prem P. Deutsch A. N. Fassett C. I. Stickle A. et al.
Surface Roughness Within Lunar South Polar Cold Traps [#2229]
Why is it so smooth / Inside this cold, dark crater? / Can it be the ice?
Jozwiak L. M.* Patterson G. W. Prem P. Bhiravarasu S. S.
Multi-Wavelength Radar Analysis of the Lunar South Polar Region: Insights from Mini-RF and DFSAR [#2339]
Using multiple radar wavelengths (X-, S-, and L-band), we investigate anomalous low-CPR regions possibly associated with regolith-ice mixtures.
Mishal K. T.* Dhingra D.
Topographic Evolution of the Lunar Poles: Implications for Permanently Shadowed Regions (PSRs) and Volatile Deposits [#2559]
PSRs have likely evolved through time, and so their exploration needs to factor in this information.
Rubanenko L.* Schörghofer N. Hayne P. O. Deutsch A. N. Cannon K. M. et al.
Small-Scale Stratigraphy and Gardening of Cold-Trapped Water Ice in the Lunar Polar Regions [#2090]
Lunar cold-trapped ice / Secret hidden in shadows / Impacts shape its fate.
Christopher H.* Hirabayashi M. Kestay L. P. Deutsch A. N. Fassett C. I. et al.
Monte Carlo Modeling of Ejecta Thickness Evolution at NASA VIPER Investigation Area [#1828]
We estimate the thickness of ejecta cover within the VIPER investigation area located near Nobile crater by modeling ejecta blankets produced by local craters.
Hayes C. W.* Minton D. A. Kloos J. L. Moores J. E.
Exploring the Effect of Small-Scale Topography on Surficial Temperatures at the LCROSS Impact Site [#1335]
Small surface roughness / Protects PSR terrain / From scattered sunlight.
Williams J.-P.* Paige D. A. Mahanti P. Robinson M. S. Siegler M. S. et al.
South Polar Cold Trap Temperatures During the KPLO Primary Mission [#1861]
LRO Diviner data and thermal modeling are used to determine polar temperatures of ShadowCam targets during the KPLO primary mission.