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Introduction: A new class of enigmatic deposits 
on the Moon has emerged since the Lunar Reconnais-
sance Orbiter (LRO) entered orbit that contrasts with the 
lunar regolith at large. Unlike optical anomalies, such as 
swirls, these deposits are unusual for their thermophys-
ical characteristics. One ubiquitous class consists of lu-
nar cold-spot craters, so-named because they are char-
acterized by extensive regions, relative to their cavity 
diameter and depth, of anomalously cold regolith tem-
peratures in nighttime Diviner data [2]. These cold re-
gions are not easily explained by conventional impact 
mechanics. Hayne et al. [1] further characterized these 
features with high Diviner-derived H-parameter values 
which provides a convention for describing thermo-
physical depth profiles. The H-parameter governs the 
variation of density and conductivity of the lunar rego-
lith with depth and is independent of temperature. The 
high H-parameter values of cold-spot craters show sug-
gests their thermophysical properties are consistent with 
a ‘fluffed up’ regolith in the upper 10 to 30 cm created 
by some aspect of the impact process.  

Also reported by [1] were thermophysically distinct 
signatures associated with pyroclastic flows and a ther-
mophysically unique region near ~45°N, ~45°E. This 
region is southeast of Mare Frigoris and is far more ex-
pansive than typical cold spots, encompassing the cra-
ters Atlas, Hercules, Burg, and Keldysh. With thermo-
physical similarities to cold spots, initially the region 
seemed to fit the definition of a cold spot. However, the 
region is without similar geomorphological characteris-
tics and bears dramatic differences in spatial scale to 
cold spots and conventional lunar pyroclastic deposits. 
The ‘Atlas thermophysical anomaly’, as we denote it 
here, also consists of high H-parameter values relative 
to its surroundings, suggesting it consists of finer rego-
lith materials, with higher porosities, and with lower 
thermal inertias than typical regolith. But, the mecha-
nism necessary to form such a large thermophysically 
distinct region is less clear making it enigmatic even rel-
ative to cold-spots. Not only is this region unique, but 
until recently it was in proximity of two CLPS landing 
sites; ispace is scheduled to land at Atlas in spring 2023. 

As mentioned previously, the regions thermophys-
ical values are consistent with pyroclastic deposits. Fur-
ther, Atlas crater itself is a floor fractured crater with 
previously documented evidence of magmatic/volcanic 
activity in the form of pyroclastic deposits [3, 4]. How-
ever, these pyroclastic deposits are localized to the Atlas 
crater cavity floor and no known studies have inferred 

additional expansive volcanic activity that would be co-
incident with the thermophysical boundaries.  

Making the region even more scientifically intri-
guing, the craters Atlas, Hercules, and Burg have each 
previously been identified as radar dark halo craters [5]. 
Ghent et al. [6]’s most recent analysis of the physical 
properties of radar dark halo craters reported that the 
halo material is depleted in surface rocks, but are other-
wise thermophysically indistinct from background reg-
olith. This contrasts with what we observe in H-param-
eter maps of the Atlas region. Here, with additional 

 
 

Figure 1: Atlas crater region in (a) LROC WAC, (b) 
Diviner H-parameter, and (c) AO 70.3 cm CPR radar. 
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radar, TIR, and gravity data sets for perspective we re-
examine the region relative to other traditional radar 
dark halo craters in search of similarities and differences 
in formation mechanism(s) and timing.  

Objectives: The Atlas region may provide a unique 
insight into how the lunar regolith is being weathered 
that contrasts with cold spots in general. For example, 
unlike the Atlas region, cold spots are not typically de-
tected in radar wavelengths. Here we focus our investi-
gation on the physical properties of the Atlas region and 
how they may or may not be synergistic with its ther-
mophysical properties with increasing depth. We do this 
with a combination of monostatic and bistatic radar ob-
servations of the region at multiple wavelengths, and we 
postulate potential formation mechanisms of this region 
relative to lunar cold spots and radar-dark halo craters 
(e.g., new craters, pyroclastic deposits, etc.). And fi-
nally, we examine GRAIL gravity data to determine if 
additional information can be derived from the deeper 
subsurface regarding magmatic/volcanic potential. 
Questions we aim to answer include: How does the 
mechanism that formed the Atlas thermophysical anom-
aly contrast with that of typical cold spots, pyroclastic 
deposits, and radar dark halo craters?  

Methods: Study of this region starts with the anal-
ysis of Diviner H-parameter and rock abundance maps 
relative to Mini-RF monostatic S-band (12.6 cm) and 
Earth-based Arecibo Observatory-Greenbank Observa-
tory (AO/GO) bistatic P-band (70.3 cm) observations. 
The contrast in physical sensitivity between circular po-
larization ratio of these two radar data sets and Diviner’s 
thermophysical information is complementary regard-
ing surface and subsurface material, size, and relative 
stratigraphic depths. We also compare these data with 
GRAIL gravity maps to examine the potential for mag-
matic sources that may have influenced the region.  

Arecibo-Mini-RF bistatic observations are also uti-
lized, but targeted at Atlas (due to recent interest with 
CLPS) and the thermophysical boundaries of the region. 
The transmitters for Mini-RF bistatic observations are 
AO (S-band) and DSS-13 (X-band). For each of these 
observations, the lunar surface is illuminated with a cir-
cularly polarized, chirped signal that tracks the Mini-RF 
antenna boresight intercept on the surface of the Moon. 
The Mini-RF receiver operates continuously and sepa-
rately receives the horizontal and vertical polarization 
components of the signal backscattered from the lunar 
surface. The resolution of the data is ~100 m in range 
and ~2.5 m in azimuth but can vary from one observa-
tion to another, as a function of the viewing geometry. 
The data are coherently averaged onto grids with a spac-
ing of 4 m along track and 20 m cross track. For analy-
sis, they are then incoherently reduced to a uniform 100 
m grid yielding approximately a 25-look average for 

each sampled location. This also enables a modest im-
provement in along-track resolution.  

Discussions and Observations: In 12.6 and 70 cm 
image data (Figure 1), the Atlas region shows distinctive 
low backscatter characteristics more consistent with ra-
dar-dark halo craters than lunar cold-spots which are 
usually undetectable at radar wavelengths [1, 5]. The ra-
dar-dark halo craters Burg, Atlas, and Hercules show 
backscatter properties consistent with lunar regolith de-
void of scatterers (boulders, fractures, and corner reflec-
tors) to at least ~10 m depths, significantly greater 
depths than sensed by Diviner. However, Atlas is ther-
mophysically distinct from is surroundings, unlike most 
radar-dark halo craters which show little contrast in the 
H-parameter relative to background regolith (Fig. 2), 
consistent with Ghent et al. [6]’s findings. This suggests 
something about this region is unique from most other 
radar-dark halo craters. GRAIL gravity data show a pos-
itive Bouguer anomaly running southwest of Hercules 
and east of Burg which is most likely associated with 
Mare Frigoris to northeast. While proximity suggest a 
relationship between the Bouguer anomaly and the At-
las region there is currently no evidence for this. Addi-
tional L-band observations of the region with Chan-
drayaan-2’s DFSAR could provide valuable comple-
mentary observations for this study. 

References: [1] Hayne et al. (2017) JGR, 122, 2371. [2] Bandfield et al. (2014) 
Icarus, 231, 221. [3] Gaddis et al. (2003) Icarus, 161, 262. [4] Gaddis et al. (2000) 
JGR, 105, 4245. [5] Ghent et al. (2005) JGR, 110, doi:10.1029/2004JE002366. [6] 
Ghent et al. (2015) Icarus, doi:10.1016/j.icarus.2015.12.014.  

 
 

 
Figure 2: Initial CPR (AO & Mini-RF) and H-parameter 
measures of secondary ejecta / background regolith.  
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