Dynamics of proton implantation and the H₂ **exosphere at the Moon: Variations in the dayside OH surface concentration during passage through the magnetotail** O. J. Tucker¹ and W. M. Farrell ¹NASA Goddard Space Flight Center (orenthal.j.tucker@nasa.gov)

Introduction: Precipitating solar wind ions can implant in regolith grains on the lunar surface and contribute to the inventory of degassed hydrogenated molecules (e.g., H₂) of the exosphere. Recent models of this process demonstrate the global distribution of OH/H2O observed by the Chandrayaan -1 Moon Mineralogy Mapper and H₂ exosphere observed by the Lunar Reconnaissance Orbiter Lyman-Alpha Mapping Project (LAMP) can be explained by the diffusion of H atoms in regolith grains and degassing of H₂ into the exosphere. Recent analyses of the 3-micron absorption feature in M³ data reveal diurnal trends that allow for comparisons of the variation of OH/H₂O surface content as the Moon traverses Earth's magnetotail. Previous model work suggested that as the Moon traversed the magnetotail the most dominant feature was a decrease in surface OH in surface regions that rotated to the nightside as the Moon exits the magnetotail [1]. To this end, we revisit the model calculations of H atom diffusion and the H₂ exosphere during the Moon's traversal of the magnetotail for comparisons to M3 data of the dayside OH content.

Acknowledgments: The SSERVI LEADER node supports this work.

References: [1] Tucker O. J., Farrell W. M. and Poppe A. R. 2021 JGRE 126 e2020JE006552