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Introduction:  A satellite’s spin state holds clues to 

its interior properties. Tidal dissipation within a body 
drives it to synchronous rotation and to a Cassini state, 
which is an equilibrium steady state in which the 
precessional periods of the spin axis and the orbit 
normal are the same [1, 2, 3]. Therefore, observations of 
the spin states of satellites in our solar system can shed 
light on their tidal dissipation properties. Using the 
equations of motion of a body’s spin axis under the 
influence of tidal and precessional torques, we derive a 
relation between the tidal dissipation factor, 𝑘ଶ/𝑄, and 
the spin vector. The observed spin orientations of the 
Moon and Titan can be used to estimate their values for 
𝑘ଶ/𝑄.  

Spin Equilibrium:  A satellite’s spin axis precesses 
about its orbit normal due to torques on its permanent 
triaxial figure. At the same time, the orbit normal 
precesses about the Laplace plane normal (defined as 
the average precessional plane) due to torques from the 
planet’s oblateness, the Sun, and when applicable other 
satellites.  Tidal torques drive the system to equilibrium, 
which for a circular orbit corresponds to synchronous 
rotation and an equilibrium spin vector, called a Cassini 
state. In a Cassini state, the precessional periods of the 
spin axis and orbit normal are the same, and the spin 
vector lies approximately in the plane defined by the 
orbit normal and Laplace plane normal, which we call 
the Cassini plane. The spin vector is separated from the 
orbit normal by the obliquity, 𝜃, and the longitude of the 
node of the equator plane on the orbit plane is 𝜙. In 
spherical coordinates, the obliquity and equator node 
are equivalent to colatitude and longitude respectively. 
The angular offset of the spin vector from the Cassini 
plane, 𝛾, is defined as sin 𝛾 = sin 𝜃 sin 𝜙. The equator 
node and Cassini plane offset depend on the degree of 
dissipation in the body. 

Using the spin equations of motion in [4] due to 
precessional and tidal torques we solve for the steady-
state obliquity, 𝜃, and equator node, 𝜙. In the absence 
of tidal dissipation, 𝜙 = 0, but when dissipation is 
included, 𝜙 will be non-zero (e.g., [5]): 
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where 𝑛, 𝑐, 𝑀, 𝑅, 𝑎, 𝑘ଶ/𝑄, 𝐽ଶ, 𝐶ଶଶ, 𝜂, 𝑖 are the satellite’s 
mean motion, normalized polar moment of inertia, 
mass, radius, semi-major axis, tidal dissipation factor, 

degree-2 gravity coefficients, orbital node precession 
frequency, and orbital inclination, and 𝑀௣ is the planet’s 
mass. 

Application to the Moon: Lunar laser ranging data 
have found that for the Moon, 𝛾 = −0.27" [5, 6]. From 
our calculations, 𝜙 = −2.3", which corresponds to an 
effective total body 𝑘ଶ/𝑄 of 1.3 × 10ିଷ. The solid-
body 𝑘ଶ/𝑄 has been determined from lunar laser 
ranging to be 6 × 10ିସ [7], so about half of the tidal 
dissipation in the Moon can be attributed to solid-body 
deformation.  

The remainder of the dissipation could arise from 
the effect of torques other than those from solid-body 
tides within the Moon. For example, [8] explore the 
effects of solid-body tides, viscous core-mantle 
coupling, and viscoelastic deformation of the solid inner 
core on the Cassini plane offset. Our functional form for 
the offset caused by solid-body tides is different from 
theirs though. In addition, [9] explore the role that 
viscous dissipation at the core-mantle boundary and the 
inner core boundary plays on the offset. Given the 
number of potential sources of deformation and torque 
on the interior of the Moon, further analysis is needed 
to disentangle the effects on the Cassini plane offset.  

Application to Titan: Having benchmarked the 
theoretical equilibrium spin state for a satellite under the 
influence of solid-body tides against the lunar 𝑘ଶ/𝑄 and 
Cassini plane offset, we can apply the theory to Titan. 
Using the observed Cassini plane offset of 𝛾 = −0.091° 
[10] and an equator node of 𝜙 = −17°, we deduce a 
theoretical 𝑘ଶ/𝑄 upper bound of 0.2 for Titan. Titan’s 
degree-2 potential Love number from Cassini data is 
𝑘ଶ = 0.6 [11], meaning that the tidal quality factor, 𝑄, 
has a lower bound of 3. A caveat is that we assume that 
all of the offset is from internal processes and we neglect 
atmospheric effects (c.f., [12]). 

Implications for tides on Titan: Using the standard 
rate of solid-body eccentricity tidal heating in a 
synchronous satellite (e.g., [13]) and the rate of 
eccentricity decay due to satellite tides (e.g., [14]), we 
calculate an eccentricity damping timescale, 𝜏௘. For 
𝑘ଶ/𝑄 = 0.2, 𝜏௘ ∼ 4.7 𝑀𝑦𝑟. The deduced dissipative 
properties for Titan imply that its orbital eccentricity 
should damp on a timescale much less than the age of 
the solar system, requiring a recent excitation. Such an 
excitation mechanism, involving close encounters with 
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a now-destroyed satellite, has recently been proposed as 
an explanation for Saturn’s young rings [15].  
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