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Introduction:  Apart from the Earth, no planetary 

body is mapped more extensively and to such fine 
resolution as Mars. The increasing volume of remote 
sensing data means we are better equipped than ever to 
answer the fundamental questions about the history of 
the planet. However, the volume of data grows much 
faster than the number of scientists who can use it. 
Moreover, manual measurement of geological features 
in Graphical Information Software (GIS) is time-
consuming. Machine Learning (ML) is a powerful tool 
for automating the analysis of ever-increasing volumes 
of remote sensing data. 

Aeolian bedforms exhibit varied morphologies at 
different scales in remote sensing imagery, therefore, 
automated detection is a complicated problem. Linear 
dune fields have been successfully characterized at 
regional scales using edge detection on Titan from 
synthetic aperture radar images [1]. Within the field of 
Earth observation, an edge detection algorithm has 
been proposed that is optimized for recognizing linear 
dune fields in panchromatic Landsat 8 data and digital 
elevation models [2]. Fingerprint minutiae extraction 
software designed for forensic applications has also 
successfully detected dune crests and their bifurcations 
and terminations for linear dunes in the Namib Sand 
Sea and Strzelecki Desert, and for Transverse Aeolian 
Ridges (TARs) on Mars [3].  

A method for mapping aeolian ripples has been 
demonstrated using HiRISE imagery from Gale crater 
[4]. Similarly to earlier studies, this uses a two-step 
algorithm that segments the bedforms from the 
surrounding terrain and then detects the crestlines [5]. 
This study uses the same approach but with a 
segmentation step that additionally classifies bedforms 
according to scale and morphology as opposed to 
foreground-background segmentation. 

The aim of this project is to create a more general 
bedform detection tool that can be applied over larger 
and more texturally diverse areas of Mars. We do this 
by applying a new bedform orientation measurement 
method alongside existing crestline detection methods 
in the literature. The inevitable difference between 
automatically measured orientations and human 
mapped orientations must not be significant enough to 
suggest a different wind regime. The secondary goal of 
this project is to demonstrate how ML terrain 
classifications designed for rover navigation can be 
effectively repurposed for science. 

Method: We measure bedform orientations from 
HiRISE images using the two-step algorithm:  

 
(1) Segmentation of aeolian bedforms from the 

surrounding terrain using ML. 
(2) Measurement of bedform orientations from 

crestlines or the bedform area. 
 
The first step applies a machine learning system 

called the Novelty or Anomaly Hunter – HiRISE 
(NOAH-H) which was developed to classify terrain in 
HiRISE images from Oxia Planum and Mawrth Vallis 
according to texture. It was designed to assess terrain 
for rover traversability but also demonstrates great 
potential to be used for science [6]. Each pixel of an 
input HiRISE image is assigned one of 14 classes. 
These classes represent every type of terrain that can 
be found at the Oxia Planum and Mawrth Vallis 
landing sites. Classes 8 through to 13 are the six types 
of ripple morphology that are recognized by NOAH-H, 
summarized in table 1. The morphologies of these 6 
bedform classes are different, therefore, they each 
require different methods to measure their orientation.  
 

8 
Large Ripples 

Simple form, Continuous 
9 Simple form, Isolated 
10 Rectilinear form 
11 

Small Ripples 

Continuous 

12 Non-continuous, Bedrock 
substrate 

13 Non-continuous, Non-
bedrock substrate 

Table 1: Subset of ontological classes used by 
NOAH-H that correspond to aeolian bedforms. Large 
refers to decimeter scale features and small refers to 
meter scale features. 

 
The second step of our process measures the 

bedform orientations for each class of bedforms. For 
the isolated ripple classes (9, 12, and 13) we developed 
a pipeline that measures ripple properties using second 
order central image moments, effectively measuring 
the orientation of the whole bedform area. The output 
of this pipeline is a database of bedform coordinates 
and orientations, which can be readily analyzed in GIS 
software. For the rectilinear ripples (class 10) we plan 
to apply the Vaz and Silvestro method [4] to obtain the 
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crestline orientations. The continuous ripple classes (8 
and 11) will use the method presented by Telfer et al. 
[2], Scuderi [3], or Vaz et al. [7] to obtain crestline 
orientations. 

Validation of our method for the isolated ripples is 
conducted in a region of Oxia Planum, where the 
aeolian environment has been thoroughly characterized 
[8]. Class 9, "large simple form isolated ripples", 
corresponds to the larger-scale TARs in this region, 
and we compare the orientations derived from human-
mapped crestlines to the area orientations measured by 
our process. The results of this will be presented at 
LPSC. 

Next Steps: Once we implement the methods from 
the literature for the three remaining continuous 
bedform classes (8, 10, and 11), we have a powerful 
tool to measure and analyse bedforms in HiRISE red 
imagery. The ML step was trained only in Oxia 
Planum and Mawrth Vallis, yet studies have 
demonstrated it performs well at detecting aeolian 
classes at Jezero crater [9]. The tool will be used to 
characterize the aeolian environment in different 
reaches of Nirgal Vallis to examine the interaction of 
aeolian transport with fluvial topography. Preliminary 
results for this study will be presented at LPSC. We 
will also build on the validation case study at Oxia 
Planum by assessing the results from the other 5 
bedform classes and ultimately compare these with 
global climate models (GCMs), which may augment 
our understanding of aeolian processes in this region. 
Going forward, we hope to either release the tool as 
open source or publish a database of TARs (and 
hopefully other bedforms) for HiRISE coverage in 
Arabia Terra. 
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