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Introduction:  NASA’s Curiosity and Persever-

ance rovers are traversing Mars’ Gale and Jezero cra-
ters, respectively [1-3]. Each rover is equipped with a 
chemistry camera instrument (ChemCam and Super-
Cam, respectively) capable of providing chemical 
composition data for rock targets on the surface of 
Mars [2-5]. The data from these instruments is often 
plotted on ternary diagrams to aid in mineralogical 
classification and to compare new observations with 
previous trends [e.g., 6-9]. However, it can be difficult 
to visualize uncertainty on ternary diagrams, and with-
out a clear depiction of the uncertainty associated with 
specific datapoints, it can be hard to make mineralogi-
cal distinctions with measurable confidence.  

Other methods [e.g., 10] determine ternary diagram 
error bars analytically and display these at fixed, repre-
sentative locations on the plot. In this work, we present 
a new tool which leverages Monte Carlo methods to 
simulate data for any small set of datapoints, then uses 
that simulated data to compute and plot confidence 
regions around each point. This tool was built for both 
ChemCam and SuperCam data, but it could be applied 
to any geochemical dataset to provide users with a 
simple solution for finding and plotting confidence 
regions around their data on ternary diagrams. 

Methods:  Curiosity’s ChemCam instrument and 
Perseverance’s SuperCam instrument are both laser-
induced breakdown spectroscopy (LIBS) instruments 
that provide chemical composition data of each obser-
vation point on a rock target [2-5].  LIBS  data  for  an 

 
Fig. 1: SiO2+Al2O3 | CaO+Na2O+K2O | FeOT+MgO ternary 
diagram showing bootstrapped compositions and confidence 
regions for observation points from six SuperCam Mars rock 
targets. Model accuracy [see 12] is used for bootstrapping 
on the center ternary; results obtained using instrument pre-
cision [see 12] are shown in cutouts on the upper right and 
lower left for comparison. 

observation point contains predictions and associated 
prediction accuracies for eight major oxides, given in 
weight percent (wt%) [2-5]. To use this tool, a user 
provides a compositions file with a small number of 
datapoints. The tool’s configuration file is used to pick 
which oxides should appear on the vertices of the ter-
nary diagram, and to set other parameters, such as how 
many points to simulate (n) per datapoint provided. For 
each datapoint, the predicted value of each oxide poxide 
and the associated accuracy of that prediction doxide are 
used to create a random normal distribution of size n 
centered at poxide with standard deviation doxide. This is 
done with the random.normal method from the py-
thon library numpy [11].  

This process extends the provided dataset by a fac-
tor of n	·	k, where k is the number of datapoints provid-
ed. Molar proportion (hereafter “molar”) data is then 
calculated from the simulated wt% data as follows: 
First, the values of the oxides being used in the ternary 
diagram are normalized using the sum of the point’s 
composition values across just those oxides. Next, 
those values are converted from wt% to molar by di-
viding each normalized wt% value by the correspond-
ing oxide’s molar mass. This molar data is then renor-
malized using the sum of the molar values. The appro-
priate molar proportions are then summed in accord-
ance with the formulae provided for each vertex of the 
ternary diagram. This process further extends the da-
taset with three new columns: one for the molar pro-
portion of each vertex (V1, V2, and V3). 

To plot the confidence regions around each data-
point, the median and standard deviation of that point’s 
simulated data is calculated and stored as mi and di, 
respectively, for each vertex column Vi. Parallel lines 
are then drawn at the 1- and 2-sigma distances above 
and below the median of the distribution, perpendicu-
lar to the corresponding axes of the ternary. The region 
enclosed by these three pairs of parallel lines (often 
hexagonal, sometimes parallelogrammatic) is then dis-
played as an approximation for the corresponding con-
fidence region. Once this process is complete, the re-
sulting figure and simulated data are saved. 

Results:  The tool itself provides a flexible and 
easy-to-use solution for creating ternary diagrams with 
approximate uncertainty quantification. The plots cre-
ated by the tool display the datapoints provided by the 
user (“anchor points”) as large circles, the simulated 
data as a cloud of points around each anchor point, and 
(if the user specifies) the crosshatches and confidence 
regions corresponding to 1- and 2-sigma for each point 
cloud. Different anchor points are displayed with dif-
ferent colors. The uncertainty quantification features 
being displayed are listed in the upper left legend. The 
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title of each plot contains the value of n, the number of 
simulated points per anchor point.  

Figure 1 is a ternary diagram generated by this tool 
showing bootstrapped composition data and 1- and 2-
sigma confidence regions for six different SuperCam 
observation points. These points represent three early-
mission Mars rock targets (Máaz, Tselchee, and 
Big_River), along with three targets chosen for their 
varying elevated CaO (Gion pt. 6: 19 wt%; Limberlost 
pt. 5: 27 wt%; Reids_gap pt. 4: 50 wt%). For this plot, 
we used n = 104. The points provided to simulate data 
are plotted as large circles at the center of each point 
cloud, and the simulated points are plotted as much 
smaller circles. The formulae used for each vertex of 
the ternary are shown at the vertices of the plot.  

Figure 2 is another ternary diagram generated by 
this tool showing bootstrapped composition data and 1- 
and 2-sigma confidence regions for four different 
ChemCam observation points. The points from 
Angmaat and Kukri plot near the SA vertex, as they are 
comprised mostly of silica and aluminum. The point 
from Harrison plots closer to the FM vertex, having 
unusually high iron. And the point from Rapitan plots 
very near the CNK vertex, with a noticeably larger 
confidence region compared to the other three points.  

Discussion: Typically, points near the CNK vertex 
(or more specifically, points with high CaO values) 
will have lower major oxide composition totals. Be-
cause of this, and the renormalization involved in find-
ing molar proportions, the uncertainty for the CaO 
prediction has more sway over the entire distribution 
than the uncertainty on, for instance, the SiO2 predic-
tion. The result is the trend seen in both Figures 1 and 
2, whether using accuracy or precision: points near the 
CNK vertex exhibit significantly larger confidence 
regions than points near the SA vertex. This supports 
the argument that the uncertainty of a specific point on 
a ternary diagram will depend on its underlying com-
position and its location on the plot.  

In Figure 1, the 2-sigma confidence regions of 
Tselchee and Máaz overlap, while the 1-sigma confi-
dence regions are disjoint. When instrument precision 
[see 12] is used to bootstrap, rather than model accura-
cy [see 12-14], their entire distributions are disjoint 
(Fig. 1, upper right). When ternary diagrams are used 
to aid in geochemical classification, bootstrapping, as 
done with this tool, can be helpful in determining how 
likely it is that a target belongs to a given endmember. 
Additionally, if the points being used as representa-
tives for different endmembers overlap significantly in 
their confidence regions even when bootstrapped using 
precision, the ability to visualize that can help motivate 
development for improved calibrations. Worth noting 
is that the current SuperCam prediction uncertainties 
are provisional, and an improved calibration is being 
actively worked. Additionally, the use of a Gaussian to 
simulate data is an assumption that only approximates 
the true distribution, and it may result in wider spread. 

In developing this tool, we wrote three Python clas-
ses: a Ternary class, with methods for plotting and 
saving ternaries; a LIBSData class for representing 

 
Fig. 2: SiO2+Al2O3 | CaO+Na2O+K2O | FeOT+MgO ternary 
diagram showing bootstrapped compositions and confidence 
regions for observation points from four ChemCam targets: 
Angmaat, Harrison, Kukri, and Rapitan. Model accuracy 
[13-14] is used for bootstrapping on the center ternary; re-
sults obtained using instrument precision [13-14] are shown 
in cutouts on the upper right and lower left for comparison. 
 
generic LIBS data (compatible with both ChemCam 
and SuperCam data), with methods for bootstrapping 
and saving simulated data, and a Config class for rep-
resenting configuration files, a common feature of 
team-built tools for processing LIBS data.  We hope to 
make the code base accessible to facilitate future tool 
development involving geochemical data and ternary 
diagram generation.  

Conclusion & Future Work: Bootstrapping pro-
vides an effective means for displaying approximate 
LIBS data uncertainty on ternary diagrams. Visualizing 
confidence regions this way is dynamic with the posi-
tion of a point on the diagram, helps in geochemical 
classification, and motivates further calibration devel-
opment. Going forward, we hope to develop a refined 
method for plotting confidence regions that captures 
their true ellipsoidal shape better than the current hex-
agonal approximations. We will also explore the use of 
other non-normal distributions in bootstrapping to at-
tempt to better capture the true data distribution. 
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