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Introduction:  The planet Mercury is closest to the 

Sun and undergoes significant tidal deformation due to 
tides raised by the Sun. Mercury’s large eccentricity and 

its 3:2 spin-orbit resonance lead to a deformation pattern 
not found elsewhere in the Solar System. In fact, the 
tidal potential would not vanish even when Mercury’s 

orbit would be perfectly circular, in contrast to, e.g., icy 
moons or Earth’s moon. The amplitude and the phase of 
the tidal deformation reveals crucial information about 
the interior structure and rheology of Mercury. While 
Mercury’s elastic response to tides was already 

observed using the Mercury Surface, Space 
Environment, Geochemistry and Ranging 
(MESSENGER) data, the viscoelastic component 
remains to be determined. 

Theory: The tidal potential W is determined by the 
mass of the central body, the radius of the body as well 
as the orbital and rotational characteristics and is given 
by 
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where G is the gravitational constant, M is the mass of 
the tide generating body, 𝑟′ is the distance between the 
two bodies, 𝑃𝑙0(cos 𝜙) are the associated Legendre 
polynomials of degree l and order 0, 𝜙 is the body-
centered angle between the central body at the point 
selected for the potential and r is the distance to the 
center of mass of the body at that point. Hence, the time-
dependent properties of the tidal potential are 
determined by 𝑟′ and 𝜙. As with increasing order l the 
tidal potential declines with 1/𝑟′𝑙+1 𝑡he expansion is 
limited to the second degree, i.e. 𝑙 = 2, 
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with 𝑃20(𝑥) = (3𝑥2 − 1)/2. Following the formalism 
in [1] we can use spherical harmonic functions 𝑌𝑚

𝑙 (𝜃, 𝜆) 
and time-dependent distortion coefficients 𝐶𝑙𝑚(𝑡) and 
𝑆𝑙𝑚(𝑡) to transform this expression to  
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where 𝑟, 𝜃, 𝜆 are spherical coordinates (radius, latitude, 
longitude) of the point of interest and t is the time. a is 
the semi-major axis and is only introduced to scale the 
coefficients 𝐶2𝑚 and 𝑆2𝑚. It is convenient to expand the 
distortion coefficients 𝐶𝑙𝑚(𝑡) and 𝑆𝑙𝑚(𝑡) in a time series 
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where 𝐶2𝑚
∗  and 𝑆2𝑚

∗  denote the static components of the 
tidal potential and 𝐶2𝑚

(𝑖)  and 𝑆2𝑚
(𝑖)  are the amplitudes 

associated with frequency 𝜔𝑖 and phase 𝜑𝑖. For a 
Keplerian orbit of Mercury with eccentricity e (in first 
order) and mean anomaly M the term 𝐶20(𝑡) takes the 
form [2] 
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As the orbit may feature significant perturbations 
and the rotation state might include libration and 
precession the simplifications made in Eq. 5 may not 
provide a comprehensive description of the tidal 
potential. Better results are obtained by performing a 
frequency decomposition of the time series for 𝐶2𝑚(𝑡) 
and  𝑆2𝑚(𝑡). 

The response of a body to the tidal potential is 
typically described by Love-Shida numbers k, h and l. 
For the degree-two tidal potential, 𝑘2 describes the 
variation of the gravity field, while ℎ2 and 𝑙2 describe 
the radial and lateral deformation of the surface, 
respectively. In case of an elastic response the potential 
V due the tidal distortion of the body takes the form 
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where 𝑘2
(𝑖) are the degree-two frequency-dependent 

elastic Love numbers and 𝑘2
𝑓 is the degree-two fluid 

Love number. We do not recall the equation for a 
viscoelastic response and refer the reader to equations 
provided in [1]. 

MESSENGER observations: Most recent 
measurements of Mercury’s 𝑘2 suggest values between 
0.569 ±  0.025 [3] and 0.53 ±  0.03 [4]. For the radial 
deformation of the surface a value of ℎ2 = 1.55 ±
 0.65 [5] was estimated. All these estimates neglected 
the frequency dependence of the tidal response, i.e. 
𝑘2 =  𝑘2

(𝑖) and ℎ2 =  ℎ2
(𝑖). Viscoelastic deformation was 
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so far not measured for Mercury. However, modelling 
suggests phase-lags for  𝑘2 and ℎ2 of up to 4°, i.e. about 
1 day [6]. Accurate measurements of the phase-lags may 
lead to tight constraints of the rheological parameters of 
Mercury’s mantle and inner core.  

 

 
Fig. 1: Static part of Mercury’s tidal potential. 

 

 
Fig. 2: Tidal potential amplitudes at the surface of 

Mercury for the 87.969 days component. 
 

 
Fig. 3: Tidal potential amplitudes at the surface of 

Mercury for the 43.985 days component. 
 

 
Fig. 4: Tidal potential amplitudes (scaled by 103) at 

the surface of Mercury for the 58.6462 days 
component. 

 
 

Frequency-dependent tidal potential: For our 
analysis we used INPOP19a ephemerides [7] and 
Mercury’s rotation state as given in the IAU report 2015 

[8]. The tidal potential was computed using Eq. 2 on a 
global grid in time steps of 1.5 days. Each instantaneous 
tidal potential grid was then expanded in spherical 
harmonics leading to a time series for the distortion 
coefficients 𝐶20, 𝐶21, 𝐶22, 𝑆21 and 𝑆22. For the zonal and 
sectorial coefficients, the dominating tidal periods are 
integer fractions of the orbital period 87.969/n days, i.e. 
87.969 days, 43.985 days, 29.323 days and so on. For 
the tesseral coefficients, which are describing obliquity 
tides, we find integer fractions of the synodic day 
175.9386/(2n+1) days, i.e. 175.9386 days, 58.6462 
days, 35.1877 days and so on. 

Fig. 1 shows the static part of Mercury’s tidal 

potential. The dynamic part of the tidal potential is 
dominated by the 87.969 days component (Fig. 2). The 
maximal deformation is found at the “hot poles” of 

Mercury. Assuming a plausible value for the ℎ2 Love 
number of ℎ2 = 0.85 the peak-to-peak radial 
deformation at the surface would be at about 2.4 m. For 
the 43.985 days component of the tidal potential the 
amplitudes are significantly smaller, only 17% of the 
main component at 87.969 days (Fig. 3).  

Obliquity tides of Mercury are very weak, less than 
0.07% of the eccentricity tides (Fig. 4). Again, assuming 
ℎ2 = 0.85 the peak-to-peak deformation would be at 
most 17 cm for the 58.6462 days component.  

The obtained results for the components of the tidal 
potential are consistent with earlier results [8]. Further 
work will investigate the viscoelastic response of 
Mercury to the different frequencies found in the 
analysis of the tidal potential. 
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