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Introduction: Previous studies have suggested the
feasibility of using machine learning techniques to
develop and achieve automated detection, recognition,
and mapping of different landform features on a
planetary surface, such as barchan dunes, transverse
ridges, and slope streaks [1]. Furthermore, some
researchers have reported the practical application of
Convolutional Neural Networks (CNNs) to classify
Mars landforms [2]. Moreover, reconstruction of wind
patterns over Mars has been previously practiced by
mapping the large ripples and sand dunes on Mars [3],
applying GIS techniques with digital terrain models
(DTMs) [4], and manually tracing the waves and ripple
migration directions on the remote sensing data [5].
However, relevant studies have yet to be found to
combine machine learning techniques, remote sensing
data of aeolian landforms, and available climate
reanalysis to reconstruct the wind patterns on Mars.

In this study, we propose and practice a method that
applies a CNN with the remote sensing data of aeolian
landform features and prevailing surface wind data on
Earth as a reference to train a machine learning model
for reconstructing the winds on Mars. In the absence of
in-situ wind direction data, we compare our obtained
results against the prevailing surface winds derived
from the GFDL/NASA Mars General Circulation
Model (MGCM) [6] output for assessment regarding
the performance, feasibility, and the outcome of this
method, and obtain the best possible understanding.

Approach and Methods: MobileNet Version 2, a
lightweight CNN architecture proposed by Google for
balancing the demands for computational time and
performance [7], was applied to train a machine
learning model with the prevailing surface wind and
the remote sensing data on Earth. For Earth, the
prevailing surface wind data was derived from the
5-generation ECMWF atmospheric reanalysis (ERA5)
of the global Earth climate [8]. The ERA5 variables of
10-m zonal (U10) and meridional (V10) surface winds,
requested through the Climate Data Store (CDS) API
[8], were used to calculate the wind speed and
direction and were averaged for 20 years to recognize
the prevailing surface winds at a 9-km spatial
resolution. Multispectral remote sensing data of ~1600
sites with aeolian landforms selected from about 50
regions worldwide were then collected through the
Google Earth Engine (GEE) API [9]. The acquired
optical bands of remote sensing data (B2-B7) are blue,

green, red, NIR, SWIR-1, and SWIR-2, all with a
resolution of 30 m and an extent of 3×3 km, and with
the center coordinates of the wind data as the reference
for alignment and labeling. Before training, the remote
sensing data were cleaned to remove all broken and
problematic data.

The data were then randomly divided into 80%
training, 10% validation, and 10% testing datasets.
After the training process was completed, the trained
model was applied to the testing dataset to observe the
performance of the method. The trained model was
then applied to six remote sensing data from Mars, and
the results were compared against the Ensemble Mars
Atmosphere Reanalysis System (EMARS) Version 1.0
[10]. EMARS is a collection of GFDL/NASA MGCM
model output and a climate reanalysis consisting of an
extended, retrospective analysis sequence that contains
hourly gridded atmospheric variables for Mars,
spanning Mars Year (MY) 24 through 33, where we
used the data for the MY 24 to 26.

Figure 1. The best six results of applying the trained
model on the testing dataset. Yellow arrows show the
reconstructed wind directions.

Figure 2. Histograms of the difference between the
reconstructed and ERA5-derived wind speed (m·s-1)
and the reconstructed and ERA5-derived direction
(degrees) on testing dataset. The NRMSEs are 0.106
(wind speed) and 0.117 (wind direction).
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Results: Figure 1 shows the six best accuracy
results obtained from the test dataset by applying the
trained model, compared to the ERA5-derived data.
Figure 2 shows an overview of all results based on the
testing dataset. The histograms show that the
reconstructed wind directions are less than 15 degrees
closer to the ERA5-derived prevailing wind directions
for most test results and that the reconstructed wind
speeds are close to the ERA5-derived wind speeds.
Figure 3 shows the plot of training loss versus the
validation loss for evaluating the model performance,
where the training loss indicates how well the model
fits the training data. In contrast, the validation loss
suggests how well the model fits the validation data.
The plot shows that the training loss and validation
loss both decrease and stabilize at a specific point, and
both values end up roughly the same, suggesting that
the model was trained pretty well.

Since we think that using our trained model for
wind speed prediction may not be reliable on Mars,
which has very different atmospheric properties than
Earth, the trained model was only applied to Mars
remote sensing data for predicting the prevailing
surface wind directions. Six remote sensing data were
selected for the application, and the results shown are
in Figure 4. The trained model doesn’t work perfectly
well on Mars but can infer the general orientation of
the prevailing surface winds within 60 degrees to the
EMARS-derived wind directions.

Figure 3. Model performance: comparison of training
loss with validation loss during the training process.

Figure 4. Mars remote sensing data, taken by the High
Resolution Imaging Experiment camera (HIRISE) [11],
the spatial extents vary from ~3 to ~8 km, and the
resolutions were downsampled to 30 m.

Limitations and Improvable Aspects: Limitations
of this approach include the fact that we didn't consider
the artifacts on some Earth remote sensing data and
that some places may not have aeolian landforms,
which may affect the results of wind reconstruction.
We suggest adding a dune classification model for
further cleaning the remote sensing data before
training. We also didn't do any data augmentation, but
doing this augmentation would significantly increase
the amount of available data for training but would
also require a lot more computational time and power.
In addition, for application on Mars, we converted the
HiRISE data to the same resolutions as the Landsat-8
(30m), which may lead to some inaccuracies in the
wind reconstruction results. So we also suggest more
appropriate practices in considering these aspects for
the future.

Conclusion: We proposed and implemented an
applied deep learning approach to train a model with
remote sensing data of aeolian landforms and wind
data on Earth as a reference to reconstruct the winds of
Mars. The reconstructed wind using our trained model
may be partially consistent with sand dune and ripple
morphology on Mars. It may not represent current or
paleo-wind regimes but can add a reference or a
'snapshot' of the potential wind flow patterns of regions
with dunes on Mars. And we can suspect that this
inconsistency may result from the historical climate
change on Mars and, thus, a change in surface
circulations. However, more work needs to be done,
and verifications with in-situ observations are much
desired in the future.
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