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Introduction:  Instrument techniques such as Laser 

Induced Breakdown Spectrometry (LIBS) or Gamma 

Ray Spectrometry (GRS) have the capability of 

quantifying the elemental composition of rock and 

regolith. GRS and LIBS have been a part of previous 

planetary investigations such as Lunar Prospector (LP) 

and Mars Science Laboratory (MSL), we well as future 

instruments and mission concepts such as Bulk 

Elemental Composition Analyzer (BECA) [1] and 

Potassium Argon Laser Experiment (KArLE) [2] 

respectively. The quantification of elemental 

abundances in the rocks can help in understanding the 

petrogenesis of different rock types. Therefore, an 

unambiguous identification of chemically distinct rock 

types on the Moon is important to support the findings 

in future lunar missions.   

In this study, we use unsupervised machine learning 

algorithms – Principal Component Analysis (PCA), and 

t-distributed stochastic neighbor embedding (t-SNE) – 

to classify chemically distinct groups of lunar rocks 

using major oxide data. By performing PCA and t-SNE, 

we identify clusters of lunar rocks that are 

compositionally similar and test the validity of the 

classification using a subset of compositional data of 

lunar samples. A simple plot between elemental ratios 

such as Mg# (=Mg/(Mg+Fe)) and elemental quantities, 

e.g. FeO (wt%) have traditionally been used to classify 

lunar rocks due to distinctive chemical makeup [3]. 

Here, we compare the accuracy of classifying lunar rock 

by PCA or t-SNE methods, vs the simplistic 2D plots of 

Mg# vs FeO (wt%) to test for unambiguous 

identification of lunar rock classes.  

Dataset:  We consider the Gruithuisen Domes (GD) 

region of the Moon as a test case scenario to identify the 

expected rock types and their expected composition at a 

local scale. GD is a region expected to contain abundant 

silicic rocks such as granites and rhyolites [4], and has 

been selected by NASA as the landing site for the 

PRISM 2 landed payload, set to deliver the Lunar VISE 

mission suite in 2027.  

Expected rock classes. The rocks at GD have been 

interpreted to be dominated by felsic rocks (possibly 

granites), anorthosites (Ferroan Anorthosite (FAN)), 

Mg-suite rocks (Norite), mare basalts, and KREEP 

basalts (impact melts). Using LP-GRS data, we 

determine the TiO2 (wt%) and FeO (wt%) of the rocks 

at GD to identify suitable geochemical analog for each 

classes from the Apollo samples. We use criteria such 

as <2% TiO2 for silicic rocks and 8-10 wt% FeO for 

norites. Identifying basaltic rocks is straightforward due 

to their distinctive dark color in color imagery. 

However, among the other rock types – namely 

anorthosites, norites, and granites – we test PCA and t-

SNE to find a robust classification technique. 

Train/Test datasets. We compile a database using 

major element data for each of the three rock classes – 

FANs, norites, and granites. For FANs and norites, we 

use MoonDB (now a part of Astromaterials Data 

System) [5] to compile a training dataset. Due to the 

limited number of granitic clasts in returned lunar 

samples, we compile a training database for granites 

using terrestrial granites data that are accessible through 

the GEOROC database [7] and test the validity of the 

classification using Apollo granite data. We build a 

testing dataset using the major elements of Apollo 

sample 60025 as the analog for ferroan anorthosite; 

sample 14318 for norites, and sample 12013 for 

granites. The entire compilation has 44 datapoints 

corresponding to each class (43 for FAN) for computing 

the principal components and t-SNE dimensions. 

Method:  We use PCA algorithm, which is a 

dimensionality reduction algorithm often used for better 

visualization of data as clusters (e.g. [6]). PCA utilizes 

a linear transformation of a dataset into a new 

coordinate system such that the first few columns 

contain maximum variance. A 2-D or 3-D plot between 

the first to third principal components are often used to 

visualize clusters among datasets. Comparatively, t-

SNE projects the dataset into a new coordinate system 

by performing non-linear transformation of the data. We 

recognize the clusters visually and compare the number 

of points of a class that can be visually and 

unambiguously identified within a cluster to test for 

accuracy in classification. We also perform the 

prediction of test data within these clusters.  

Results: PCA Results. Out of 44 datapoints, 47.7% 

of norite data fall within non-overlapping norite cluster. 

overlap with anorthosite cluster, 84.1% anorthosite 

datapoints fall within non-overlapping anorthosite 

clusters, and 97.7% granite datapoints fall in granite 

clusters. The test data corresponding to the Apollo 

samples 12013 (granite), 14318 (norite), and 60025 

(FAN) are all correctly recognizable among their 

respective clusters (Fig. 1). 
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Figure 1. PCA on major oxide data. Apollo Samples 12013 

(representative of lunar granite), 60025 (FAN), and 14318 

(Norite) major oxides are tested by projeting in PC biplot.  

t-SNE Results. Using t-SNE, we recognize more 

distinctive clusters for each rock type (fig. 2) as 

compared to PCA. 84.1% of norite data fall under non-

overlapping norite clusters (as compared to 50% in 

PCA), 93.18% anorthosite data fall under anorthosite 

clusters, and 95.45 % granite data fall under granite 

cluster. The limitation with t-SNE process is the non-

repeatability of t-SNE results with each analysis (as the 

process is heuristic); however, local convergence 

among each cluster remains same (i.e., non-overlapping 

data will follow the same trend in each iteration). 

 
Figure 2. t-SNE on the major oxide data (same dataset as 

those used in figure 1). t-SNE performs a non-linear 

transformation of geochemical data to perform clustering 

among similar classes. Compared to PCA results as shown in 

fig. 1, t-SNE proves to be better in classifying the three classes. 

    2-D plots between chemical indices.  Mg# is often 

used as a common geochemical classifier for identifying 

magnesian suite rocks such as norite. Anorthosites and 

norites have relatively higher values of Mg#, while 

anorthosites have lower FeO (wt%) as compared to 

norites. So, 2-D plot between Mg# and FeO (wt%) can 

be used to distinguish different types of lunar rocks (fig. 

3).  However, the test data for FAN, granite, and norite 

from Apollo samples are unrecognizable due to 

overlapping clusters. None of the Apollo sample 12013 

(granites) and Apollo sample 60025 (FAN) could be 

unambiguously recognizable within the clusters. 

 

Figure 3. 2-D plot between Mg# and FeO (wt%). Ferroan 

Anorthosites are clustered at values with higher Mg# than 

granites and comparable Mg# like Norite. Ferroan 

anorthosites have lower FeO (wt%) than norites. However, 

there is ambiguity in identifying Apollo 12013 granite from the 

anorthosite clusters and norite clusters. Additionally, 2 data 

points of FAN Apollo sample 60025 could be misrecognized 

as norites due to comparable FeO (wt%) 

 

Conclusions: In the test-case scenario for 

chemically classifying the analogous non-mare rock 

types of GD (i.e., FAN, norite, and granite), we identify 

t-SNE as the most robust clustering algorithm as 

compared to PCA method, while the traditionally used 

2-D plots between Mg# vs FeO (wt%) was least robust. 

Furthermore, in both PCA and t-SNE, the test-data are 

unambiguously recognized with 100% accuracy, 

although it should be noted that only 4 data points 

corresponding to each analogous Apollo samples were 

used here. We also notice that a 2-D plot between Mg# 

and FeO (wt%) can be used to create separate clusters 

of the chemically distinct lithologies, however the 

FANs and granites test data are non-predictable as they 

do not plot over any unambiguous clusters.  
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