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Introduction:  Astrobiology, and the search for 

signs of past or present life in the universe, are a core 

priority for the upcoming decade of space exploration 

[1], especially the need to understand how multiple ob-

servations of a system (i.e., multiple potential biosigna-

tures) can be used to increase confidence in life detec-

tion [2]. This is particularly true for agnostic biosigna-

tures, or those not specific to a biochemical basis or 

mechanism [3], in contrast to otherwise highly specific 

biosignatures such as DNA, chlorophyll, ATP, etc.  This 

project aims to use the extensive amounts of terrestrial 

data available from biogenic and abiogenic systems to 

create a binary classifier for life detection.  The prelim-

inary data set is limited to measurements that have been 

previously suggested as agnostic biosignatures, includ-

ing elemental abundance and distribution, isotopic frac-

tionation, VNIR reflectance spectra, and Raman spectra. 

This work aims to determine which combinations of 

features across these data types are most relevant to life 

detection through assessing feature importance in mul-

tiple machine learning algorithms. Our work will help 

establish which data types and features are most valua-

ble for planning future life detection missions. 

Materials and Methods: Data selection: Data 

types (elemental abundance, isotopic fractionation, re-

flectance spectra, and Raman spectra) were collected  

from various public databases, publications, and lab-

recorded measurements to create a representative-sys-

tems dataset. The representative systems, such as basalt, 

bone, or biofilm, were chosen to be unambiguously 

classifiable as indicative or non-indicative of life -- edge 

cases such as prions, protobionts, and technological de-

vices were not included. The indicative systems were 

further tagged as indicative alive (microbes, vegetation, 

etc.), indicative mixed (seawater, soil, etc.) and indica-

tive not-alive (bone, coal, etc.) to track whether some 

could be more effectively classified than others. Exam-

ples of non-indicative systems were lunar rock, sand or 

basalt. Overall, 15 indicative and 8 non indicative rep-

resentative systems were created from a total 77 indica-

tive samples and 255 non indicative samples. 

Data Collection: Elemental and isotopic fractiona-

tion data was collected for each representative system 

using various publications reporting results from X-ray 

diffraction and laser-induced breakdown spectroscopy 

techniques. Multiple measurements of the elemental 

distribution and isotopic fraction were aggregated into 

one metric for each system through geometric and arith-

metic means respectively. Databases such as 

ECOSTRESS [4], USGS [5], RELAB [6], and PDS-

CRISM [7] were used for the reflectance spectroscopy 

data. Public sources such as the RRUFF [8] and others 

were used to collect Raman spectroscopy data for a ma-

jority of the systems. Lab recorded measurements of re-

flectance and Raman spectroscopy data of soil, ice, and 

seawater were used to complete the dataset.  

Standardization: Measurements were standardized 

to a common limits of detection, range, etc. Elemental 

abundance measurements were set to an artificial limit 

of detection of 1.5 × 10-5. Absent isotopic fractionation 

data for a specific isotope was replaced with the mean 

of all data for that isotope. Raman spectra with incident 

wavelengths of 532 and 514.5 nm and similar instru-

mentation were used. Finally, for reflectance spectros-

copy, only 200-2100 nm data points were used after or-

dering the spectra from lowest to highest wavelength.  

Feature Extraction: The elemental features used for 

all the representative systems include fractional content 

of C, O, K, N, H, P, Mg, S, Ca, Na, Cl, Mn, Al, Si, Fe, 

and Ti. The isotopic fractionation data features were 

Carbon-13, Oxygen-18 and deuterium deltas between 

the ratios of heavier and lighter isotopes. Numerical 

analysis using SciPy signal [9] was done to determine 

the number and position of peaks, troughs, peak widths, 

mean reflectance, and mean peak widths; these served 

as features for the reflectance spectroscopy data. Simi-

larly, the Raman spectroscopy data features extracted 

were mean intensity value, number of peaks, number of 

troughs, broadest peak, and mean peak width. These 

features were used in the following algorithmic imple-

mentation. 

Machine Learning Implementation: The data was 

trained and tested on k-nearest neighbors (KNN), lo-

gistic regression with L2 regularization (LR), Random 

Forest (RF), support vector machines (SVM), logistic 

regression, and Gaussian Naïve Bayes (GNB), and then 

with a voting classifier combining the output from all of 

the above. Additionally, Principal Component Analysis 

was used an unsupervised learning method to supple-

ment findings from the supervised learning models. The 

classification performance was evaluated with 2,000 

50% train-test splits with Monte Carlo simulations. The 
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voting classifier was then iteratively run with each one 

of the 4 data types removed to allow assessment of the 

relative value of each combination of data types. After 

this, feature importance was tested by removing individ-

ual features to assess relative feature importance.  

Results: Accuracy: Ranging from zero to one, the 

Receiver Operating Characteristic Area Under the 

Curve (ROC AUC) is a standard metric for classifica-

tion accuracy (0.5 is equivalent to random guessing). 

The ROC AUC of the combined voting classifier was 

0.853 and this was similar to the performance of the 

model with only elemental distribution (AUC = 0.859) 

and only Raman spectroscopy (AUC = 0.86). However 

only using isotopic fractionation (AUC = 0.716) and 

only using reflectance spectroscopy (AUC = 0.474) led 

to a significant decrease in the accuracy of the model. 

 
Figure 1: Accuracy changes resulting from removal 

of groups of data feature types (top) and individual 

data features (bottom). 

 Data Type Feature Testing: When evaluating the 

importance of groups of data features, removal of the 

elemental data type causes the most significant decrease 

in the model’s accuracy. All significant decreases of 

13% and more are present when elemental abundance is 

removed from the model training data (Figure 1). Ra-

man spectroscopy displays strong performance when 

tested individually; however, it shows a greater decrease 

in accuracy (>5%) when combined with data types other 

than elemental abundance. Isotopic fractionation and re-

flectance spectroscopy exhibit a low performance when 

used individually and this translated to the combination 

test where, when combined with each other, a signifi-

cant decrease in performance was seen (>20%); accu-

racy only increased when Raman spectroscopy or ele-

mental abundance was added to the combination.  

Individual Feature Testing: The most significant de-

crease in accuracy was found with the removal of the 

element abundance data feature titanium (Δ AUC of -

0.0432) and the Raman spectroscopy data feature broad-

est peaks (Δ AUC of -0.0334). Conversely, when the el-

emental abundance data feature chlorine is removed, we 

see an increase in accuracy (Δ AUC of 0.0463). The re-

sults suggest that the individual data features do not 

cause extreme variations in accuracy. Therefore, overall 

no general trend is seen where one individual data fea-

ture is substantially more valuable. However, certain 

data features are more significant than others in context 

of data types; for example, Raman broadest peaks leads 

to greatest decrease in accuracy and hence it is the most 

significant feature within the Raman spectra data type.  

Conclusions and Discussion: The results suggest 

that elemental abundance distribution and Raman spec-

tral features are valuable in assessing whether a sample 

may be indicative or not indicative of life.  For example, 

these two data types and algorithm could be used to au-

tomatically exclude likely abiogenic (low interest) sam-

ples while prioritizing samples for further robotic inves-

tigation or planned sample return. The model AUC of 

0.853 is very good in context of a relatively small and 

broad collected dataset and implementation, and thus 

serves as a proof of concept for further development 

with additional data, which could be specifically se-

lected to represent a mission target environment such as 

an ocean world, polar ice, or subsurface aquifer. The 

ability to quantitatively assess how different instru-

ments increase science return is particularly valuable.  

Future Work: Work is ongoing to improve the data 

standardization, particularly the handling of non-re-

ported values, as well as to add more systems and new 

data types. Work is also underway investigating a con-

volutional neural network to extract features from the 

Raman and VNIR spectra, a more general approach than 

the features manually selected in this preliminary effort. 

We are evaluating venues to make the standardized data 

publicly available. 
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