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Introduction:  It is important to properly identify 

the character of a lava flow to understand its 
emplacement and geologic implications. For example, 
the models for the emplacement of simple ‘a‘ā flows are 
fundamentally different from models for the 
emplacement of inflated pāhoehoe flows which both are 
very different from models for tube-fed lava flows [e.g., 
1]. The misidentification of the lava flow type can lead 
to errors in the estimated lava flux of multiple orders of 
magnitude [e.g., 2]. Errors in lava flux result in 
comparable errors in estimates of eruption duration with 
concomitant issues with modeling of the magma 
plumbing system and source.  

In introductory geology classes, lava flow 
classification relies on surface texture with the primary 
distinction being between smooth pāhoehoe and rough 
‘a‘ā breccia. Planetary volcanologists have largely 
relied on inferring surface texture from orbital remote 
sensing to classify lavas. However, the surface of a lava 
flow can be easily eroded or covered. Thus, only the 
uppermost and relatively pristine extraterrestrial lavas 
can be reliably classified. On Earth, older lava flows are 
primarily identified based on exposures in natural or 
artificial cross-sections. Key observables are the size, 
shape, and distribution of clasts, vesicles, and joints, as 
well as petrographic texture [e.g., 3]. Lava layers are 
seen in vertical exposures from orbit on Mars and the 
Moon [e.g., 4,5], but even high-resolution orbital data 
cannot resolve details of clasts, vesicles, and joints, 
making the interpretation of these layers difficult [6].  

New (and near-future) data provide detailed views 
of lava flows on Mars and the Moon in cross-section.  
The Mars 2020 Perseverance rover has made systematic 
field observations of igneous rocks on the floor of 
Jezero crater [7]. These rocks could be from one or more 
lava flows, and the observations are being placed into a 
stratigraphy that can be related to an (imperfectly 
exposed) cross-section [8,9]. Furthermore, there are 
proposed missions to examine the lavas exposed in 
cross-section in the walls of the lunar pits [10]. These 
new and proposed observations of lava cross-sections 
are well-suited to lava classification built upon 
terrestrial methods. 

Challenges: We see two significant issues when it 
comes to using terrestrial cross-sectional lava flow 
classification methods in a planetary context: (1) there 
is no widely accepted standard methodology for lava 
flow classification, and (2) real lavas and outcrops are 
messy.  

No standards. A key issue for lava flow 
classification is that it is highly subjective; it is often 
possible to identify which institution one trained at by 
the way intermediate lava types are classified. Given 
that there is no widely recognized standard for 
classifying lavas, this problem cannot be entirely 
eliminated. However, it is possible to use an algorithm-
like methodology to make the classification transparent, 
systematic and repeatable [3].  

A messy world. Another major complication is that 
it is essential to capture the uncertainty in the 
classification of a lava. There are two main sources of 
uncertainty. First, many lavas are intermediate in type, 
exhibiting a mix of characteristics of end-member lava 
types. Second, real outcrops often do not allow all 
characteristics to be confidently observed. In other 
words, the quality of the exposure affects one’s 
confidence in classifying lavas.  

Solutions: We see the potential to address the issues 
with applying terrestrial lava classification methods in 
planetary science in the near future.  

There is a method to build from. While not widely 
adopted, there is a systematic method for classifying 
lava flows that was developed for interpretation of 
terrestrial lavas seen in drill core [3]. This method does 
not eliminate the subjective nature of where one draws 
boundaries between different lava types, but it does 
force the systematic collection of observations for all 
lavas and enforces consistency in the interpretations. 
We suggest that this method can be modestly improved 
for the planetary context. In particular, [3] does not take 
stratigraphic relations into consideration. Figure 1 
illustrates the basic cross-section of three major lava 
types. Note how a basal breccia is characteristic of only 
‘a‘ā flows while an upper breccia is characteristic of 
both ‘a‘ā and rubbly pāhoehoe. In other words, 
identifying where an auto-breccia falls within a lava 
flow’s internal stratigraphy is essential for properly 
classifying that flow.   

Fuzzy-logic is for messy classifications. There are 
mathematical ways to work with “messy” problems 
with ‘fuzzy logic’ being specifically designed to deal 
with situations where classes have gradational 
boundaries [11]. In the case of lava flows, fuzzy logic 
can provide a quantitative measure of a given flow’s 
affinity to each of the end-member types [3]. The key is 
to provide a list of key observables and a measure of 
how common or diagnostic a given observable is for 
each lava type. For example, a basal breccia is a very 
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strong indicator for an ‘a‘ā flow. In contrast, spheroidal 
vesicles in the core of a flow are rare in all lavas but are 
significantly more common in pāhoehoe flows.  

Calibrating against terrestrial analog data is the key 
to selecting appropriate weights for the diagnostic 
strength of an observable for a given lava type. We have 
extensive field observations from many dozens of lava 
flows across the Earth, including classic examples in 
Hawaii and Iceland as well as more intermediate lavas 
from across the western US and flood basalts around the 
world. While there are copious amounts of data in hand, 
this is still far from a case where “big data” methods can 
be applied. Instead, reasonable estimates for the values 
of the weights can be made by a team of experts as a 
starting point. These weights can then be iteratively 
adjusted to provide good results to the analog data.  

It is appropriate to ask if lavas on Mars or the Moon 
could be different from any lava on Earth. The physics 
of lava flowing on the Moon, Mars and Earth should not 
be the cause of such differences. The effect of lower 
gravity is quite well replicated by the effect of lower 
slope. The cooling of lavas will differ, but in all cases 
molten lava is massively hotter than the ambient 
environment; this means the differences will be modest, 
unlikely to lead to fundamentally different types of lava. 
The major element compositional range of lavas on 
Earth generally exceeds that of the Moon and Mars, but 
a focus on more mafic terrestrial basalts would be 
appropriate. Effusion rate is the one parameter that may 
be significantly larger for some planetary flows than for 
the terrestrial analogs for which we have good field 
observations. 

A final significant point is that the method from [3] 
includes consideration of the quality of observations. 
This is captured using “confidence values” for each 
observation. These are subjective but are expressed as 
numeric values ranging from 100% for perfect exposure 
to 0% if a characteristic is unobservable.   

The application of this method to an unclassified 
lava flow has two basic steps. First, a value for 
confidence in the presence or absence of each key 
observable is collected. Then this value is multiplied by 
the weight of that observable for a given lava type. 
These products are summed and the result is divided by 
value for an ideal example of that lava type. This result 
can be reported as a percent to describe the degree to 
which the unknown lava is consistent with that lava 
type. These computations can be easily built into even a 
basic spreadsheet and are illustrated in Fig. 2. 
Completing this process for each lava type provides a 
picture of the relative affinity of the unknown lava to the 
various classes of lavas (e.g., pāhoehoe, ‘a‘ā, rubbly 
pāhoehoe) as well as the confidence in those 
classifications.  
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Fig. 1. Simplified 
diagram of some 
features used to 
classify three 
major types of 
lava flows. 
 
 
 
 
 

 
Fig. 2. Schematic 
of fuzzy logic lava 
flow classification 
method.  
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