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Introduction: For upcoming Artemis missions, 

conducting hazard assessments across potential landing 
sites is instrumental in guiding site selection and extra-
vehicular activity (EVA) traverse planning. Boulders 
are an important part of this hazard assessment. 
Characterizing boulder size, frequency, and spatial 
distribution across large regions of interest (ROIs) 
necessitates the development of automated tools that 
can increase the accuracy and speed of surface hazard 
detection. Many lunar boulders are difficult to identify 
and measure in satellite imagery as their extents are 
unresolvable at the available image resolution. In many 
cases, boulders are subpixel in diameter, making them 
nearly undetectable.  

In the South Polar region of the Moon, a low Sun 
elevation angle causes even small boulders to cast 
long, discernable shadows. In this region, instead of 
detecting boulders themselves, we can search for 
boulder shadows. We train a convolutional neural 
network (CNN) to find boulder shadows in imagery 
and use the resulting detections to estimate shadow 
length and compute boulder height. 

Data: High resolution data from the Narrow Angle 
Camera (NAC) instrument aboard NASA’s Lunar 
Reconnaissance Orbiter (LRO) was sourced from the 
LROC data node at Arizona State University [1] to 
conduct boulder shadow detection.  

 Data Specification. Twenty-three NAC frames 
near the lunar south pole were chosen based on their 
resolution, incidence angle, and proximity near 
Connecting Ridge [2]. The finalized NAC frames have 
a resolution range of 0.7 m to ~ 1.2 m and incidence 
angle range of ~87° to ~90°. The NAC frames were 
sliced into 512x512-pixel grayscale images (“tiles”) 
before analysis.  

Labeling Training Data.  Lunar geospatial 
scientists analyzed 11,008 NAC frame tiles, 
identifying individual boulders, boulder clusters, and 
boulder fields. Boulders were manually identified, 
interpreted, and labeled [3] with respect to visual and 
topographical characteristics in-line with the approach 
of [4]. The geologists used bright sunward facing 
pixels and other geologic contextual clues (distance to 
crater rims, ejecta deposits) to identify boulders in the 
NAC frame tiles. 

Methods: We developed a multi-stage processing 
pipeline for boulder detection and height estimation. 

Boulder Shadow Detection. We trained a CNN 
object detection model on the expert labeled dataset to 
detect bounding boxes around boulders and the full 
extent of their associated shadows. We fine-tuned an 
ImageNet-pretrained YOLOv5s6 model [5]. A round 
of model-assisted labeling was used to augment the 
original training set with additional boulder shadows 
that were originally undetected by human labelers. At 
inference time, we use SAHI [6] for tiled inference — 
we predict on tiles extracted from the input image as 
well as the full image and combine these predictions 
— giving the model the opportunity to find smaller 
boulders and shadows.  

Azimuth Filtering and Height Estimation. For each 
shadow bounding box detection, we binarize the area 
with a threshold value of half the mean pixel 
brightness in the detection and extract the dark regions. 
We estimate where a shadow could be by drawing a 
line from the brightest point of the detection — in most 
cases the boulder — away from the Sun along the solar 
azimuth angle. A shadow is considered real where this 
shadow hypothesis and binarized dark regions overlap. 
If there is no overlap, we remove the detection from 
the set of identified boulders, thus filtering out some 
false positives from the initial detection model.  

From the length of the boulder shadow and the 
solar elevation angle, we use the formula from [4] to 
calculate boulder height: 

ℎ =
𝑙𝑙

tan 𝑖𝑖
−  ℎ′ 

where 𝑙𝑙 is the measured length of the boulder’s 
shadow, 𝑖𝑖 is the solar incidence angle, and ℎ′ is the 
elevation difference between the base of the boulder 
and the tip of the shadow. 

Results:  We measured our boulder detection 
model performance on a held-out validation set of 138 
tiles containing 1,261 boulders. Table 1 lists metrics 
from the final model as well as various ablations. 
Model training time on an NVIDIA RTX A4000 
laptop GPU is approximately 4 hours. Inference speed 
ranges from 330-593 ms per tile.  

Shadow Detection Performance. All results are 
listed for Intersection over Union threshold of 0.6. 
Precision and Recall values are averages computed 
over confidence values from 0.5 to 0.95 in 0.05-point 
intervals.  
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Method Precision Recall 
Full Image Inference 0.306 0.427 
Tile-only Inference 0.467 0.543 
SAHI (Tile+ Full Inference) 0.497 0.604 
w/o Model-Assisted Labels 0.713 0.466 
with Model-Assisted Labels 0.763 0.534 

Table 1: Average Precision and Average Recall. Values 
computed from COCO and YOLO protocols differ, thus are 
presented separately. Higher values are better.   

Boulder Spatial and Height Distributions. Figures 
1 and 2 show examples of boulder/shadow extraction 
from detections as well as the spatial distribution of 
detected boulders in a sample NAC tile.  

Figure 1: Spatial distribution and heights of boulders in a 
tile from NAC frame M112504292L. The numbers represent 
the height in meters of a boulder detected in that position. 

Figure 2: (left) The bounding box containing the boulder and 
its shadow as detected by the CNN. (middle) The shadow 
hypothesis —  where the shadow could be in the image given 
the predicted boulder location and the sun azimuth angle. 
(right) The overlapping region, the length of which is 
measured to calculate shadow length. Shadow length (l) = 27 
m, boulder height (h) = 0.8 m. 

 Discussion: Generating ground truth training data 
posed difficulties for lunar geospatial scientists. There 
are three primary sources of error that arose during the 

manual NAC frame analysis. The highest contributing 
factor is the limited spatial resolution, since the 
image’s quality directly affects the ability to 
confidently assess surface hazards. Secondly, viewing 
geometry obstructs accurate discernment of boulder 
frequency and dimensions in highly clustered areas. 
Thirdly, low Sun elevation angle causes long shadows 
to be cast by other morphological features such as 
mounds and crater rims, obscuring smaller features and 
inhibiting the ability to precisely delineate a boulder 
and its shadow.  

In early iterations of our model, one of the most 
common misidentifications was labeling small craters 
as boulders. Craters share some similar visual 
signatures to boulders but have shadows in the 
opposite direction, so they can be removed from our 
boulders lists in the azimuth filtering step. Future work 
should focus on disambiguating the features at the 
model stage.  

Our method of shadow length estimation has two 
main sources of error. The first is from the CNN model 
detection. If the detected region does not include the 
full extent of the shadow, then our length estimation 
step does not have enough context to find the shadow 
tip. When measuring the shadow, we then choose a 
low threshold for determining the shadow hypothesis 
to ensure we have as wide a swath of shadow region as 
possible to intersect with the solar azimuth line, and to 
ensure that shadows with less contrast are detectable. 
This choice may lead to overly elongated shadows that 
then overestimate the height of boulders.  

Conclusion: We present a machine learning based 
method for fast initial hazard assessment. Using a 
convolutional neural network trained on expertly 
labeled lunar boulder and shadow data, along with 
spatially-motivated postprocessing, we show the 
ability to detect boulders in NAC imagery up to the 
subpixel level. This method can be a value add to lunar 
site and EVA planning during Artemis and other future 
missions.  
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