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In this abstract, we take a “data-first” approach to  

analysis of the SuperCam VISIR spectral dataset f rom 

the Mars2020 rover to classify targets based on 

spectral similarities and determine the main drivers o f  

spectral variance. 

SuperCam VISIR:  SuperCam collects “passive” 

VISIR data from ~0.4 µm to 2.6 µm across two 

wavelength ranges [1]. The VIS portion of the 

spectrum covers 5925 spectral channels from ~0.38  to  

0.84 µm and the IR portion covers 256 spectral 

channels from ~1.3 to 2.6 µm. In this abstract, we have 

analyzed 2157 VISIR spectra from sols 11 to 642.  

Data preparation. Prior to performing the analysis, 

several data downselection and pre-processing steps 

were performed. Long-distance (>10m) and shadowed 

targets were removed. Beginning with calibrated  data 

[2, 3], we smoothed the VIS spectra with a 51-channel 

average to reduce spikes. Next, we downsampled the 

data so that the spectral resolution is 0.01 µm over the 

entire spectral range and to ensure that our resu lts are 

not overwhelmed by the VIS spectra, which have ~23x 

more channels than the IR. Last, we normalized the 

data using the Euclidean distance (“L2-normalization”) 

to reveal spectral differences that are otherwise hidden 

by albedo. The VIS and IR portions of the spectra were 

normalized separately and then concatenated by point.  

Principal Components Analysis:  PCA is a 

commonly used method of dimensionality reduction. It 

mathematically determines the spectral shapes that  

account for the most variance for a given  dataset . I n  

this way, we projected the dataset into “principal 

components-space” and began to group spectra based 

on their spectral similarities and determine the 

dominant spectral and physical features of the dataset. 

Results and Discussion:  For the SuperCam VISIR 

dataset analyzed here, the first principal component  

(PC-1) accounts for 61% of the spectral variance in the 

dataset, PC-2 accounts for 21%, and PC-3 accounts for 

11%. Figure 1 shows these three principal components. 

99% of the variance in the dataset is represented by the 

first 10 PCs. It should be noted that PCs do not 

actually correspond to “physical” spectra, as they are  

dimensionless in PC-space and centered around zero. 

We can still look at the PCs and correlate their sha pes 

with distinct spectral features and use other approaches 

to derive physical meaning from the PCs. 

 
Figure 1. Principal components (or loadings) #1-3. PC 

shapes correlate with IR spectral features, such as the slope 

in PC-2 from 1.3-1.9 µm correlating with olivine and the 

strong feature in PC-3 at ~1.9 µm correlating to hydration. 
 

Figure 2 shows the result of plotting the PC values 

for each spectrum against each other and color them by 

“formation”. As of now, we have included the Maaz 

and Seitah formations from the crater floor [3] and 

labeled the remaining targets as the “Delta” [4]. 

 
Figure 2. Top: PC-2 versus PC-1, Bottom: PC-2 versus PC-

3. Points are colored by formation (blue: Maaz, orange: 

Seitah, green: Delta). Black points are olivine targets and 

purple points are targets with purple coatings; target names 

are noted in the text. 
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In PC-space, each formation tends to cluster 

together with some overlap. In general, the Maaz 

targets have higher PC-1 values, the Delta targets have 

lower PC-1 values, and the Seitah targets have middle-

to-high PC-1 values. In terms of PC-2, the Seitah 

targets have higher values than the Maaz a nd Delta 

targets. There is a  small set of Maaz targets with higher 

PC-2 values that are regolith targets, which may po int  

to the mixing of regolith between the Maaz and Seitah 

[5]. 

Next, we compared PC values to a variety of 

spectral parameters (derived from the VISIR spectra). 

The top panel of Figure 3 plots the spectral slope 

from 600 to 840 nm (S6084) against the ratio of 

reflectance to 600 to 840 nm (R6084), which 

highlights a trend of relative dustiness, assuming 

spectrally dark, flat substrates [6]. This trend correlates 

well to the PC-1 values, indicating that points with 

lower PC-1 values are dustier than those with  h igher 

PC-1 values. This is seen in the PC-1 shape, which is 

relatively flat in the IR: indicative of a dustier target. 

 
Figure 3. Top: S6048 vs R6048, colored by PC-1. Bottom: 

S1350_1800 vs BD545, colored by PC-2. Arrows indicate 

trends based on the compared spectral parameters. 
 

The bottom panel of Figure 3 plots the spectral 

slope from 1350 to 1800 nm (S1350_1800) against the 

band depth at 545 nm (BD545). Higher BD545 values 

are indicative of more ferric materials [6] a nd h igher 

S1350_1800 values are indicative of more ferrous 

materials. Here, lower PC-2 values correspond to 

higher BD545 values and higher PC-2 values 

correspond to higher S1350_1800 values. This slope is 

seen in the PC-2 shape in Figure 1. To confirm that 

PC-2 is correlated with olivine, we highlighted a set of  

olivine-rich Seitah targets (Cine, Dourbes, Garde, and  

Norante [7]) on Figure 2, and found that they do have 

higher PC-2 values. Additionally, plotting these targets 

helped confirm that PC-1 is dependent on the dustiness 

of a given target: point #9 of Norante (Figure 2) is 

significantly dustier than the rest of the Norante points 

and thus has a lower PC-1 value, but a still h igh  PC-2  

value. 

Lastly, we attempted to determine what the driving 

physical factor behind PC-3 is. Throughout the 

mission, we have seen that many rocks have “purple 

coatings” [8, 9], whose origin and significance is st ill 

under investigation. Plotting some of these targets (Alk 

es disi, Naadiin, and Grandes Tours du Lac  [10]) on  

Figure 2 showed that they cluster together with low 

PC-2 values and higher PC-3 values. 

Figure 4 shows the mean spectra of the olivine a nd 

purple coating points from Figure 2. These two spectra 

share spectral features with the PCs in Figure 1 with 

which they correlate. For example, the strong slope 

from 1.3-1.9 µm in the olivine spectra corresponds to  

the same slope in PC-2. 

 
Figure 4. Mean spectra for the points in Figure 2.  
 

In conclusion, we have analyzed the full SuperCam 

VISIR dataset with PCA and determined the physical 

properties of targets that dominate the spectral variance 

in the VISIR for the first 2-3 PCs. The next step in this 

research will be to further investigate higher PCs, look  

for correlations with LIBS compositions, and do m ore 

detailed unit breakdowns. 
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